Giải bài 16 trang 81 sách bài tập toán 12 - Chân trời sáng tạoTrong không gian (Oxyz) được thiết lập tại một sân bay, người ta ghi nhận hai máy bay đang bay đến với các vectơ vận tốc (overrightarrow u = left( {90; - 80; - 120} right),overrightarrow v = left( {60; - 50; - 60} right)). Tính góc giữa hai vectơ vận tốc nói trên (kết quả làm tròn đến hàng phần mười của độ). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Trong không gian \(Oxyz\) được thiết lập tại một sân bay, người ta ghi nhận hai máy bay đang bay đến với các vectơ vận tốc \(\overrightarrow u = \left( {90; - 80; - 120} \right),\overrightarrow v = \left( {60; - 50; - 60} \right)\). Tính góc giữa hai vectơ vận tốc nói trên (kết quả làm tròn đến hàng phần mười của độ). Phương pháp giải - Xem chi tiết Sử dụng tích vô hướng của hai vectơ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\). Lời giải chi tiết \(\cos \left( {\overrightarrow u ,\overrightarrow v } \right) = \frac{{\overrightarrow u .\overrightarrow v }}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|}} = \frac{{90.60 + \left( { - 80} \right).\left( { - 50} \right) + \left( { - 120} \right).\left( { - 60} \right)}}{{\sqrt {{{90}^2} + {{\left( { - 80} \right)}^2} + {{\left( { - 120} \right)}^2}} .\sqrt {{{60}^2} + {{\left( { - 50} \right)}^2} + {{\left( { - 60} \right)}^2}} }} \approx 0,991\) Vậy \(\left( {\overrightarrow u ,\overrightarrow v } \right) \approx {7,5^ \circ }\).
|