Bài 1.6 trang 13 SBT đại số và giải tích 11

Giải bài 1.6 trang 13 sách bài tập đại số và giải tích 11.Chứng minh rằng...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng cos2(x+kπ)=cos2x,kZ. Từ đó vẽ đồ thị hàm số y=cos2x

Phương pháp giải:

Sử dụng công thức cos(α+k2π)=cosα

Lời giải chi tiết:

cos2(x+kπ)=cos(2x+k2π) =cos2x,kZ

Vậy hàm số y=cos2x là hàm số chẵn, tuần hoàn, có chu kỳ π.

Đồ thị hàm số đi qua các điểm (0;1),(π4;0), (π4;0),(π2;1),(π2;1)

Quảng cáo

Lộ trình SUN 2026

LG b

Từ đồ thị hàm số y=cos2x , hãy vẽ đồ thị hàm số y=|cos2x|

Phương pháp giải:

Cách dựng đồ thị hàm số y=|f(x)| từ đồ thị hàm số y=f(x):

+ Giữ nguyên phần đồ thị phía trên trục Ox của đồ thị hàm số y=f(x)

+ Lấy đối xứng phần đồ thị phía dưới trục Ox của đồ thị y=f(x) qua Ox

+ Xóa phần đồ thị phía dưới trục Ox của đồ thị hàm số y=f(x).

Lời giải chi tiết:

Đồ thị hàm số y=|cos2x| gồm:

+ Phần đồ thị phía trên trục Ox của đồ thị hàm số y=cos2x

+ Phần đồ thị có được từ việc lấy đối xứng phần đồ thị phía dưới trục Ox của đồ thị hàm số y=cos2x.

Đồ thị hàm số y=|cos2x| là:

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close