Giải bài 1.21 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức

Cho hai đa thức:

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Cho hai đa thức:

\(A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1;\\B = 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2.\)

a)      Tìm đa thức C sao cho A-C=B;

b)      Tìm đa thức D sao cho A+D=B;

c)      Tìm đa thức E sao cho E-A=B;

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng bài toán ngược tìm C,D,E. Sau đó sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Lời giải chi tiết

a)       

\(\begin{array}{l}A - C = B\\ C = A - B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - 7{x^2}yz + 5x{y^2}z - 3xy{z^2} + 2\\ = \left( {7xy{z^2} - 3xy{z^2}} \right) + \left( { - 5x{y^2}z + 5x{y^2}z} \right) + \left( {3{x^2}yz - 7{x^2}yz} \right) - xyz + \left( {1 + 2} \right)\\ = 4xy{z^2} - 4{x^2}yz - xyz + 3\end{array}\)

b)

\(\begin{array}{l}A + D = B\\ D = B - A \\=  - \left( {A - B} \right) =  - C \\=  - 4xy{z^2} + 4{x^2}yz + xyz - 3.\end{array}\)

c)

\(\begin{array}{l}E - A = B\\E = A + B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2\\ = \left( {7xy{z^2} + 3xy{z^2}} \right) + \left( { - 5x{y^2}z - 5x{y^2}z} \right) + \left( {3{x^2}yz + 7{x^2}yz} \right) - xyz + \left( {1 - 2} \right)\\ = 10xy{z^2} - 10x{y^2}z + 10{x^2}yz - xyz - 1\end{array}\)

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close