Bài 103 trang 22 SBT toán 9 tập 1

Giải bài 103 trang 22 sách bài tập toán 9. Chứng minh x - căn x +1 =...+ 3/4... Giá trị đó đạt được khi x bằng bao nhiêu?

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.Nam.Name.Vn và nhận về những phần quà hấp dẫn

Đề bài

Chứng minh:

\(x - \sqrt x  + 1 = {\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) với \(x > 0\)

Từ đó, cho biết biểu thức \(\dfrac{1}{{x - \sqrt x  + 1}}\) có giá trị lớn nhất là bao nhiêu ?

Giá trị đó đạt được khi \(x\) bằng bao nhiêu?  

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

Sau đó biện luận để tìm giá trị lớn nhất. 

Lời giải chi tiết

Ta có: \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\)\( = x -2.\dfrac{1}{2}. \sqrt x  + {\dfrac{1}{4}} + {\dfrac{3}{4}} \)\(= x - \sqrt x  + 1\) 

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Ta có: \({\dfrac{1}{x - \sqrt x  + 1}} = {\dfrac{1}{{{\left( {\sqrt x  - {\dfrac{1}{2}}} \right)}^2} + {\dfrac{3}{4}}}}\) có giá trị lớn nhất khi và chỉ khi \({\left( {\sqrt x  - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\)  nhỏ nhất.

Vì \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} \ge 0\) nên \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}} \ge \dfrac{3}{4}\)

Suy ra \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) nhỏ nhất bằng \({\dfrac{3}{4}}\) khi và chỉ khi \(\sqrt x  - {\dfrac{1}{2}} = 0 \Leftrightarrow \sqrt x  = {\dfrac{1}{2}} \)\(\Leftrightarrow x = {\dfrac{1}{4}}\) (thỏa mãn \(x>0\))

Khi đó: \({\dfrac{1}{x - \sqrt x  + 1}} = \dfrac{1}{{\dfrac{3}{4}}} =\ {\dfrac{4 }{3}}\)

Vậy \({\dfrac{1}{x - \sqrt x  + 1}}\) có giá trị lớn nhất bằng \(\dfrac{4 }{3}\) khi \(x = {\dfrac{1 }{4}}\).

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close