Giải bài 10 trang 72 SGK Toán 8 tập 2– Chân trời sáng tạo

Đường đi và khoảng cách từ nhà anh Thanh

Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên

Đề bài

Đường đi và khoảng cách từ nhà anh Thanh (điểm \(M\)) đến công ty (điểm \(N\)) được thể hiện trong Hình 22. Hãy tìm con đường ngắn nhất để đi từ nhà anh Thanh đến công ty.

 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Nếu hai góc của tam giác này bằng hai góc của tam giác kia thì hai tam giác đố đồng dạng với nhau.

- Hai tam giác đồng dạng thì các cặp cạnh tương ứng có cùng tỉ lệ.

Lời giải chi tiết

Ta có: \(AB = AM + MB = 4,73 + 4,27 = 9m\);\(CD = CN + ND = 1,84 + 1,16 = 3m\)

Xét tam giác \(AIB\) tam giác \(CID\) ta có:

\(\widehat {ABI} = \widehat {CDI}\) (giả thuyết)

\(\widehat {AIB} = \widehat {CID}\) (hai góc đối đỉnh)

Do đó, \(\Delta AIB\backsim\Delta CID\) (g.g)

Suy ra, \(\frac{{AB}}{{CD}} = \frac{{AI}}{{CI}} = \frac{{BI}}{{DI}} \Leftrightarrow \frac{9}{3} = \frac{{AI}}{{2,4}} = \frac{{7,8}}{{DI}}\).

Ta có:

\(\frac{9}{3} = \frac{{AI}}{{2,4}} \Rightarrow AI = \frac{{9.2,4}}{3} = 7,2m\);\(\frac{9}{3} = \frac{{7,8}}{{ID}} \Rightarrow ID = \frac{{3.7,8}}{9} = 2,6m\).

Các con đường đi từ nhà anh Thanh đến công ty là:

Con đường: \(MB \to BI \to IC \to CN\) có độ dài là:

\(MB + BI + IC + CN = 4,27 + 7,8 + 2,4 + 1,84 = 16,31km\)

Con đường: \(MB \to BI \to ID \to DN\) có độ dài là:

\(MB + BI + ID + DN = 4,27 + 7,8 + 2,6 + 1,16 = 15,83km\)

Con đường: \(MA \to AI \to ID \to DN\) có độ dài là:

\(MA + AI + ID + DN = 4,73 + 7,2 + 2,6 + 1,16 = 15,69km\)

Con đường: \(MA \to AI \to IC \to CN\) có độ dài là:

\(MA + AI + IC + CN = 4,73 + 7,2 + 2,4 + 1,84 = 16,17km\)

Vậy đi theo con đường \(MA \to AI \to ID \to DN\) là ngắn nhất.

 

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close