Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 2 - Đại số 8Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 8 - Chương 2 - Đại số 8
Lựa chọn câu để xem lời giải nhanh hơn
Đề bài Bài 1. Thực hiện phép tính và rút gọn: \({{\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)} \over {6{x^3} + 6}}:{{{x^2} - 1} \over {4{x^2} - 4x + 4}}.\) Bài 2. Cho biểu thức \(A = {{a + 2} \over {a - 2}}\left( {{{6a} \over {{a^3} - 8}} + {{2a} \over {{a^2} + 2a + 4}} + {1 \over {2 - a}}} \right) - {{4a + 4} \over {a - 2}}.\) a) Tìm điều kiện của a để biểu thức A xác định. b) Rút gọn A. c) Tính giá trị của A khi \(a = 2012.\) LG bài 1 Phương pháp giải: Phân tích các đa thức thành nhân tử rồi rút gọn Lời giải chi tiết: \({{\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)} \over {6{x^3} + 6}}:{{{x^2} - 1} \over {4{x^2} - 4x + 4}} \) \(\;= {{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}} \over {6\left( {{x^3} + 1} \right)}}:{{\left( {x - 1} \right)\left( {x + 1} \right)} \over {4\left( {{x^2} - x + 1} \right)}}\) \( \;= {{\left( {x + 1} \right){{\left( {x - 1} \right)}^2}} \over {6\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}.{{4\left( {{x^2} - x + 1} \right)} \over {\left( {x - 1} \right)\left( {x + 1} \right)}}\) \(\;= {{2\left( {x - 1} \right)} \over {3\left( {x - 1} \right)}}.\) LG bài 2 Phương pháp giải: a.Biểu thức xác định khi các mẫu khác 0 b. Thực hiện phép tính trong ngoặc trước, rồi đến nhân chia, cộng trừ c. Thay a vào A Lời giải chi tiết: a) Điều kiện xác định: \(a - 2 \ne 0 \Rightarrow a \ne 2\) (vì \({a^2} + 2a + 4 = {a^2} + 2a + 1 + 3 \)\(\;= {\left( {a + 1} \right)^2} + 3 > 0\;\forall a)\) . b) \(A = {{a + 2} \over {a - 2}}\left( {{{6a} \over {{a^3} - 8}} + {{2a} \over {{a^2} + 2a + 4}} + {1 \over {2 - a}}} \right) - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}:\left[ {{{6a} \over {{a^3} - 8}} + {{2a} \over {{a^2} + 2a + 4}} + {1 \over {2 - a}}} \right] - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}:\left[ {{{6a} \over {\left( {a - 2} \right)\left( {{a^2} + 2a + 4} \right)}} + {{2a} \over {{a^2} + 2a + 4}} - {1 \over {a - 2}}} \right] - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}:\left[ {{{6a + 2a\left( {a - 2} \right) - \left( {{a^2} + 2a + 4} \right)} \over {\left( {a - 2} \right)\left( {{a^2} + 2a + 4} \right)}}} \right] - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}:\left[ {{{6a + 2{a^2} - 4a - {a^2} - 2a - 4} \over {\left( {a - 2} \right)\left( {{a^2} + 2a + 4} \right)}}} \right] - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}:{{{a^2} - 4} \over {\left( {a - 2} \right)\left( {{a^2} + 2a + 4} \right)}} - {{4a + 4} \over {a - 2}}\) \( = {{a + 2} \over {a - 2}}.{{\left( {a - 2} \right)\left( {{a^2} + 2a + 4} \right)} \over {\left( {a - 2} \right)\left( {a + 2} \right)}} - {{4a + 4} \over {a - 2}} \) \(= {{{a^2} + 2a + 4} \over {a - 2}} - {{4a + 4} \over {a - 2}}\) \( = {{{a^2} + 2a + 4 - 4a - 4} \over {a - 2}} \) \(= {{{a^2} - 2a} \over {a - 2}} = {{a\left( {a - 2} \right)} \over {a - 2}} = a.\) c) \(a = 2012 \Rightarrow A = 2012\) (thỏa điều kiện xác định). HocTot.Nam.Name.Vn
|