Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Đại số 8Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 4 - Chương 2 - Đại số 8 Đề bài Quy đồng mẫu thức các phân thức: a) \( {{4b} \over {{b^2} - 2bc + {c^2}}};{{2a} \over {c - b}};{1 \over {4ac + 4ab}}\) b) \( {x \over {{x^3} - 3{x^2} + 3x - 1}};{{3x} \over {{x^2} - 1}};{1 \over {{x^2} - 1}}\) Phương pháp giải - Xem chi tiết Phân tích các mẫu thành nhân tử Tìm mẫu thức chung Quy đồng
Lời giải chi tiết a) \( {b^2} - 2bc + {c^2} = {\left( {c - b} \right)^2}\) \( 4ac + 4ab = 4a\left( {b + c} \right)\) \( MTC = 4a{\left( {c - b} \right)^2}\left( {b + c} \right)\) Vậy: \( {{4b} \over {{b^2} - 2bc + {c^2}}} = {{16ab\left( {b + c} \right)} \over {4a{{\left( {c - b} \right)}^2}\left( {b + c} \right)}};\) \( {{2a} \over {c - b}} = {{8{a^2}\left( {{c^2} - {b^2}} \right)} \over {4a{{\left( {c - b} \right)}^2}\left( {b + c} \right)}};\) \( {1 \over {4ac + 4ab}} = {{{{\left( {c - b} \right)}^2}} \over {4a{{\left( {c - b} \right)}^2}\left( {b + c} \right)}}\) b) Ta có: \( {x^3} - 3{x^2} + 3x - 1 = {\left( {x - 1} \right)^3};\) \({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right)\) \( {x^2} - x = x\left( {x - 1} \right)\) \( MTC = x{\left( {x - 1} \right)^3}\left( {x + 1} \right)\) Vậy: \( {x \over {{x^3} - 3{x^2} + 3x - 1}} = {{{x^2}\left( {x + 1} \right)} \over {x{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)}};\) \({{3x} \over {{x^2} - 1}} = {{3{x^2}{{\left( {x - 1} \right)}^2}} \over {x{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)}};\) \( {1 \over {{x^2} - x}} = {{{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)} \over {x{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)}}\) HocTot.Nam.Name.Vn
|