Đề kiểm tra 15 phút - Đề số 3 - Bài 4 - Chương 3 – Hình học 7Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 4 - Chương 3 – Hình học 7 Đề bài Cho tam giác ABC đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho \(DE = B{\rm{D}}.\) Gọi M, N theo thứ tự là trung điểm của BC và EC. Gọi P, Q lần lượt là giao điểm của AM, AN với BE. Chứng minh rằng: \(BP = PQ = QE.\) Phương pháp giải - Xem chi tiết Tính chất đường trung tuyến trong tam giác Lời giải chi tiết M là trung điểm của BC (gt) nên AM là đường trung tuyến của \(\Delta ABC\). Lại có BD là trung tuyến của \(\Delta ABC\), mà AM cắt BE tại P nên P là trọng tâm của \(\Delta ABC\), ta có: \(BP = \dfrac{2 }{ 3}B{\rm{D}}.\) Chứng minh tương tự ta có Q là trọng tâm của \(\Delta AC{\rm{E}} \Rightarrow QE = \dfrac{2 }{ 3}DE\) Mặt khác vì \(PB = 2P{\rm{D}}\) (tính chất trọng tâm) và \(QE = 2Q{\rm{D}}\), do đó \(BP = PQ = QE.\) HocTot.Nam.Name.Vn
|