Câu hỏi:

a) Cho ba số a, b, c thỏa mãn \(\left( {a + b + c} \right)\left( {ab + bc + ca} \right) = 2017\) và \(abc = 2017\).

Tính giá trị của biểu thức \(P = \left( {{b^2}c + 2017} \right)\left( {{c^2}a + 2017} \right)\left( {{a^2}b + 2017} \right)\).

b) (Dành riêng cho lớp 8A) Tìm các số tự nhiên x, n sao cho số \(p = {x^4} + {2^{4n + 2}}\) là một số nguyên tố.

  • A \(\begin{array}{l}a)\,\,P = 1\\b)\,\,n = 1\,;\,\,\,x = 0\end{array}\)
  • B \(\begin{array}{l}a)\,\,P = 2\\b)\,\,n = 0\,;\,\,\,x = 2\end{array}\)
  • C \(\begin{array}{l}a)\,\,P = 3\\b)\,\,n = 1\,;\,\,\,x = 2\end{array}\)
  • D \(\begin{array}{l}a)\,\,P = 0\\b)\,\,n = 0\,;\,\,\,x = 1\end{array}\)

Phương pháp giải:

a) Biến đổi biểu thức P để có nhân tử giống câu 2 và áp dụng kết quả ở câu 2 để tính P.

b) Biến đổi p thành tích các đa thức. p là số nguyên tố khi chỉ có hai nghiệm là 1 và chính nó. Từ đó lập luận để tìm x, n.

Lời giải chi tiết:

a) Cho ba số a, b, c thỏa mãn \(\left( {a + b + c} \right)\left( {ab + bc + ca} \right) = 2017\)\(abc = 2017\).

Tính giá trị của biểu thức \(P = \left( {{b^2}c + 2017} \right)\left( {{c^2}a + 2017} \right)\left( {{a^2}b + 2017} \right)\).

Theo câu 2 ta có \(\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) + abc = \left( {a + b + c} \right)(ab + bc + ca)\)

\(\begin{array}{l} \Rightarrow \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) = \left( {a + b + c} \right)(ab + bc + ca) - abc = 2017 - 2017 = 0\\P = \left( {{b^2}c + 2017} \right)\left( {{c^2}a + 2017} \right)\left( {{a^2}b + 2017} \right)\\\;\;\; = \left( {{b^2}c + abc} \right)\left( {{c^2}a + abc} \right)\left( {{a^2}b + abc} \right)\\\;\;\; = bc\left( {c + a} \right)ca\left( {c + b} \right)ab\left( {a + c} \right)\\\;\;\; = {a^2}{b^2}{c^2}\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) = 0.\end{array}\)

b) (Dành riêng cho lớp 8A) Tìm các số tự nhiên x, n sao cho số \(p = {x^4} + {2^{4n + 2}}\) là một số nguyên tố.

\(\begin{array}{l}p = {x^4} + {2^{4n + 2}} = {\left( {{x^2}} \right)^2} + 2.{x^2}{.2^{2n + 1}} + {\left( {{2^{2n + 1}}} \right)^2} - 2.{x^2}{.2^{2n + 1}}\\\;\;\; = {\left( {{x^2} + {2^{2n + 1}}} \right)^2} - {x^2}{.2^{2n + 2}}\\\;\;\; = \left( {{x^2} + {2^{2n + 1}} - x{{.2}^{n + 1}}} \right)\left( {{x^2} + {2^{2n + 1}} + x{{.2}^{n + 1}}} \right).\end{array}\)

Với mọi số tự nhiên x, n \( \Rightarrow {2^{2n + 1}} \ge {2^1} = 2 \Rightarrow {x^2} + {2^{2n + 1}} + x{.2^{n + 1}} \ge 2\)

Với mọi số tự nhiên x, n\( \Rightarrow {2^{2n}} \ge 1 \Rightarrow {x^2} + {2^{2n + 1}} - x{.2^{n + 1}} = {x^2} - 2x{.2^n} + {2^{2n}} + {2^{2n}} = {\left( {x - {2^n}} \right)^2} + {2^{2n}} \ge 1\)

Để p là một số nguyên tố \(\left\{ \begin{array}{l}{x^2} + {2^{2n + 1}} - x{.2^{n + 1}} = 1\\{x^2} + {2^{2n + 1}} + x{.2^{n + 1}} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{2^{2n + 1}} = 2\\x - {2^n} = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2n + 1 = 1\\x = {2^n}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}n = 0\\x = {2^0} = 1\end{array} \right..\) 

Vậy với \(n = 0\) và \(x = 1\) thỏa mãn yêu cầu đề bài.

Chọn D.



Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay