Nội dung từ Loigiaihay.Com
Câu hỏi:
Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:
Câu 1:
\({\rm{cos}}\alpha = \frac{3}{4}\)
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\({\rm{cos}}\alpha = \frac{3}{4}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha + {\left( {\frac{3}{4}} \right)^2} = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{9}{{25}} = \frac{{16}}{{25}}\)\( \Rightarrow \sin \alpha = \pm \frac{4}{5}\)
*\(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \pm \frac{4}{5}:\frac{3}{4} = \pm \frac{{16}}{{15}}\)
*\(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\left( { \pm \frac{{16}}{{15}}} \right) = \pm \frac{{15}}{{16}}\)
Chọn A.
Câu 2:
\(cot\alpha = \frac{8}{{15}}\)
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\end{array} \right..\)
Lời giải chi tiết:
\(cot\alpha = \frac{8}{{15}}\)
* \(\tan \alpha .\cot \alpha = 1 \Leftrightarrow tan\alpha = \frac{1}{{\cot \alpha }} = \frac{1}{{\frac{8}{{15}}}} = \frac{{15}}{8}\)
* \(1 + {\cot ^2}\alpha = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{8}{{15}}} \right)^2} = \frac{1}{{si{n^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{si{n^2}\alpha }} = \frac{{289}}{{225}}\)\( \Rightarrow si{n^2}\alpha = \frac{{225}}{{289}}\)\( \Rightarrow sin\alpha = \pm \frac{{15}}{{17}}\)
*\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{15}}{{17}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{225}}{{289}} = \frac{{64}}{{289}}\)\( \Rightarrow \cos \alpha = \pm \frac{8}{{17}}\)
Chọn D.