Câu hỏi:

Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:

Câu 1:

\(\sin \alpha  = \frac{5}{{13}}\)

  • A \(\cos \alpha  = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha  = \frac{5}{{12}}\,\,;\,\,\cot \alpha  = \frac{{12}}{5}\)
  • B \(\cos \alpha  =  \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha  =  \pm \frac{5}{{12}}\,\,;\,\,\cot \alpha  =  \pm \frac{{12}}{5}\)
  • C \(\cos \alpha  =  \pm \frac{{12}}{{13}}\,\,;\,\,\tan \alpha  =  \pm \frac{{12}}{5}\,\,;\,\,\cot \alpha  =  \pm \frac{5}{{12}}\)
  • D \(\cos \alpha  = \frac{{12}}{{13}}\,\,;\,\,\tan \alpha  = \frac{{12}}{5}\,\,;\,\,\cot \alpha  = \frac{5}{{12}}\)

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\\tan \alpha .\cot \alpha  = 1\\1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)

Lời giải chi tiết:

\(\sin \alpha  = \frac{5}{{13}}\)

Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Leftrightarrow {\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\alpha  = 1\)\( \Leftrightarrow {\cos ^2}\alpha  = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \cos \alpha  =  \pm \frac{{12}}{{13}}\)

Lại có: \({\tan ^2}\alpha  + 1 = \frac{1}{{{{\cos }^2}\alpha }}\) \( \Leftrightarrow {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }} - 1 = \frac{{169}}{{144}} - 1 = \frac{{25}}{{144}}\) \( \Rightarrow \tan \alpha  =  \pm \frac{5}{{12}}\)

\( \Rightarrow \cot \alpha  = \frac{1}{{\tan \alpha }} =  \pm \frac{{12}}{5}\)

Chọn B.


Câu 2:

\(\tan \alpha  = \frac{{12}}{{35}}\)

  • A \(\cot \alpha  = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha  = \frac{{35}}{{37}}\,\,;\,\,\sin \alpha  = \frac{{12}}{{37}}\)
  • B \(\cot \alpha  = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha  =  \pm \frac{{35}}{{37}}\,\,;\,\,\cos \alpha  =  \pm \frac{{12}}{{37}}\)
  • C \(\cot \alpha  = \frac{{35}}{{12}}\,\,;\,\,\cos \alpha  =  \pm \frac{{35}}{{37}}\,\,;\,\,\sin \alpha  =  \pm \frac{{12}}{{37}}\)
  • D \(\cot \alpha  = \frac{{35}}{{12}}\,\,;\,\,\sin \alpha  = \frac{{35}}{{37}}\,\,;\,\,\cos \alpha  = \frac{{12}}{{37}}\)

Phương pháp giải:

Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\\\tan \alpha .\cot \alpha  = 1\\1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)

Lời giải chi tiết:

\(\tan \alpha  = \frac{{12}}{{35}}\)

Ta có: \(\tan \alpha .\cot \alpha  = 1\)\( \Leftrightarrow \cot \alpha  = \frac{1}{{\tan \alpha }} = 1:\frac{{12}}{{35}} = \frac{{35}}{{12}}\)

Lại có: \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{{12}}{{35}}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{1369}}{{1225}}\)\( \Rightarrow {\cos ^2}\alpha  = \frac{{1225}}{{1369}}\)\( \Rightarrow \cos \alpha  =  \pm \frac{{35}}{{37}}\)

\({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)\( \Leftrightarrow {\left( {\frac{{35}}{{37}}} \right)^2} + {\sin ^2}\alpha  = 1\)\( \Leftrightarrow {\sin ^2}\alpha  = 1 - \frac{{1225}}{{1369}} = \frac{{144}}{{1369}}\)\( \Rightarrow \sin \alpha  =  \pm \frac{{12}}{{37}}\)

Chọn C.




Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay