Nội dung từ Loigiaihay.Com
Câu hỏi:
Tính các tỷ số lượng giác còn lại của \(\alpha \) biết:
Câu 1:
\(\sin \alpha = \frac{5}{{13}}\)
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)
Lời giải chi tiết:
\(\sin \alpha = \frac{5}{{13}}\)
Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Leftrightarrow {\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\cos ^2}\alpha = 1 - \frac{{25}}{{169}} = \frac{{144}}{{169}}\)\( \Rightarrow \cos \alpha = \pm \frac{{12}}{{13}}\)
Lại có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\) \( \Leftrightarrow {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} - 1 = \frac{{169}}{{144}} - 1 = \frac{{25}}{{144}}\) \( \Rightarrow \tan \alpha = \pm \frac{5}{{12}}\)
\( \Rightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = \pm \frac{{12}}{5}\)
Chọn B.
Câu 2:
\(\tan \alpha = \frac{{12}}{{35}}\)
Phương pháp giải:
Sử dụng công thức lượng giác: \(\left\{ \begin{array}{l}{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\\tan \alpha .\cot \alpha = 1\\1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\end{array} \right.\)
Lời giải chi tiết:
\(\tan \alpha = \frac{{12}}{{35}}\)
Ta có: \(\tan \alpha .\cot \alpha = 1\)\( \Leftrightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{12}}{{35}} = \frac{{35}}{{12}}\)
Lại có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow 1 + {\left( {\frac{{12}}{{35}}} \right)^2} = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{1369}}{{1225}}\)\( \Rightarrow {\cos ^2}\alpha = \frac{{1225}}{{1369}}\)\( \Rightarrow \cos \alpha = \pm \frac{{35}}{{37}}\)
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)\( \Leftrightarrow {\left( {\frac{{35}}{{37}}} \right)^2} + {\sin ^2}\alpha = 1\)\( \Leftrightarrow {\sin ^2}\alpha = 1 - \frac{{1225}}{{1369}} = \frac{{144}}{{1369}}\)\( \Rightarrow \sin \alpha = \pm \frac{{12}}{{37}}\)
Chọn C.