Câu hỏi:

Một tiêu điểm của Elip \(\left( E \right):\,\,\frac{{{x^2}}}{9} + \frac{{{y^2}}}{6} = 1\) có tọa độ là:

  • A \(\left( {0;\,\,3} \right)\)                       
  • B \(\left( {0;\,\,\sqrt 3 } \right)\)             
  • C \(\left( {3;\,\,0} \right)\)           
  • D \(\left( { - \sqrt 3 ;\,\,0} \right)\)

Phương pháp giải:

Elip \(\left( E \right):\,\,\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1 \Rightarrow {c^2} = {a^2} - {b^2}\)

\( \Rightarrow \)Tiêu điểm của elip là \({F_1}\left( {c;\,\,0} \right),\,\,{F_2}\left( { - c;\,\,0} \right)\).

Lời giải chi tiết:

Xét Elip \(\left( E \right):\,\,\,\frac{{{x^2}}}{9} + \frac{{{y^2}}}{6} = 1\) ta có:

\(\left\{ \begin{array}{l}{a^2} = 9\\{b^2} = 6\end{array} \right. \Rightarrow {c^2} = {a^2} - {b^2} = 9 - 6 = 3 \Rightarrow c = \sqrt 3 \)

\( \Rightarrow \) Elip \(\left( E \right)\) có hai tiêu điểm là \({F_1}\left( { - \sqrt 3 ;\,\,0} \right)\) và \({F_2}\left( {\sqrt 3 ;\,\,0} \right)\).

Chọn  D.



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay