Câu hỏi:

Cho hình phẳng D giới hạn bởi đường cong y=12x2x, trục hoành và các đường thẳng x=1;x=4. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích bằng:

  • A 42π5.
  • B 3π.
  • C 128π25.
  • D 4π15.

Phương pháp giải:

- Xét phương trình hoành độ giao điểm, xác định các nghiệm thuộc [0;4].

- Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số y=f(x), y=g(x), đường thẳng x=a, x=b khi quanh quay trục hoành là: V=πba|f2(x)g2(x)|dx.

Lời giải chi tiết:

Xét phương trình hoành độ giao điểm: 12x2x=0[x=0[1;4]x=2[1;4].

Hình phẳng  D giới hạn bởi đường cong y=12x2x, trục hoành và các đường thẳng x=1, x=4 có thể tích là:

V=π41|(12x2x)2|dx=π41(12x2x)2dx=42π5

Chọn A.



Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay