Nội dung từ Loigiaihay.Com
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm thỏa mãn \(f'\left( 8 \right) = 5\). Giá trị của biểu thức \(\mathop {\lim }\limits_{x \to 8} \dfrac{{f\left( x \right) - f\left( 8 \right)}}{{x - 8}}\) bằng:
Phương pháp giải:
Hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \(x = {x_0}\) khi tồn tại giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\). Khi đó \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết:
Do hàm số \(y = f\left( x \right)\) có đạo hàm thỏa mãn \(f'\left( 8 \right) = 5\) nên \(\mathop {\lim }\limits_{x \to 8} \dfrac{{f\left( x \right) - f\left( 8 \right)}}{{x - 8}} = f'\left( 8 \right) = 5\).
Chọn B.