Câu hỏi:

Cho đường thẳng \(\left ( d \right ) : 2x - 3y + 3 = 0\) và \(M\left( {8;\,\,2} \right)\), \({M_1}\left( {a;\,\,b} \right)\) là điểm đối xứng với \(M\) qua \(d\). Giá trị của biểu thức \(2a - b\) là:

  • A \( - 4\)  
  • B \(12\)    
  • C \(0\)                  
  • D \(4\)                  

Phương pháp giải:

+ Viết PTĐT \(\Delta \) đi qua \(M\left( {8;\,\,2} \right)\) và vuông góc với đường thẳng \(d\).

+ Xác định tọa độ giao điểm của hai đường thẳng \(\Delta \) và \(d\).

+ Áp dụng công thức tìm tọa độ trung điểm để xác định tọa độ của \({M_1}\left( {a;\,\,b} \right)\).

Lời giải chi tiết:

Ta có: \( \left ( d \right ) : 2x - 3y + 3 = 0 \Rightarrow \overrightarrow{n_{d}} = \left ( 2 ; - 3 \right ) ;\) \({\vec u_d} = \left( {3;\,\,2} \right)\)

Phương trình đường thẳng \(\Delta \) đi qua \(M\left( {8;\,\,2} \right)\) và vuông góc với đường thẳng \(d\) nhận \({\vec u_d} = \left( {3;\,\,2} \right)\) làm VTPT là: \(3(x - 8) + 2(y - 2) = 0 \Leftrightarrow 3x + 2y - 28 = 0\)

Gọi \(H = d \cap \Delta \), tọa độ điểm \(H\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}2x--3y + 3 = 0\\3x + 2y - 28 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 5\end{array} \right. \Rightarrow H\left( {6;\,\,5} \right)\)

Khi đó, \({M_1}\left( {a;\,\,b} \right)\) là điểm đối xứng với \(M\left( {8;\,\,2} \right)\) qua \(H\left( {6;\,\,5} \right)\)\( \Rightarrow \)\(H\) là trung điểm của \(M{M_1}.\) Ta có:

\(\left\{ \begin{array}{l}6 = \frac{{8 + a}}{2}\\5 = \frac{{2 + b}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12 = 8 + a\\10 = 2 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 8\end{array} \right. \Rightarrow {M_1}\left( {4;\,\,8} \right)\)

Thay \(a = 4;\,\,b = 8\) vào công thức \(2a - b\)ta được: \(2.4 - 8 = 0\)

Chọn  C



Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay