Câu hỏi:

Đồ thị hàm số nào sau đây có tiệm cận đứng là đường thẳng \(x =  - 2\)?

  • A \(y = \dfrac{{x + 1}}{{{x^2} - 4}}\)  
  • B \(y = \dfrac{{x + 2}}{{{x^2} - 4}}\)
  • C \(y = \dfrac{{x + 2}}{{{x^2} + 4}}\)
  • D \(y = \dfrac{{x + 1}}{{{x^2} + 4}}\)

Phương pháp giải:

Đồ thị hàm số \(y = f\left( x \right)\) nhận đường thẳng \(x = {x_0}\) làm TCĐ khi thỏa mãn một trong số các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  + \infty ,\,\,\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty ,\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty ,\,\,\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty \).

Lời giải chi tiết:

Xét đáp án C và D, hai hàm số đều có TXĐ \(D = \mathbb{R}\) nên không có tiệm cận đứng.

Xét đáp án B: \(y = \dfrac{{x + 2}}{{{x^2} - 4}} = \dfrac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \dfrac{1}{{x - 2}}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to  - 2} y = \dfrac{1}{{ - 2 - 2}} =  - \dfrac{1}{4} \ne  \pm \infty \), do đó đồ thị hàm số không có tiệm cận đứng \(x =  - 2\).

Xét đáp án A ta có: \(y = \dfrac{{x + 1}}{{{x^2} - 4}}\).

Có \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y =  + \infty  \Rightarrow \) Đồ thị hàm số nhận \(x =  - 2\) là đường tiệm cận đứng.

Chọn A.



Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay