Nội dung từ Loigiaihay.Com
Câu hỏi:
Đồ thị hàm số \(y = \dfrac{{x - 1}}{{\sqrt {3{{\rm{x}}^2} + 1} }}\) có bao nhiêu đường tiệm cận ngang?
Phương pháp giải:
Đường thẳng \(y = b\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right) \Leftrightarrow \mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = b.\)
Lời giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{\sqrt {3 + \dfrac{1}{{{x^2}}}} }} = \dfrac{1}{{\sqrt 3 }}\)
\( \Rightarrow y = \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{ - \sqrt {3 + \dfrac{1}{{{x^2}}}} }} = - \dfrac{1}{{\sqrt 3 }}\)
\( \Rightarrow y = - \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.
Vậy đồ thị hàm số có 2 đường TCN.
Chọn C.