Câu hỏi:

Đồ thị hàm số \(y = \dfrac{{\sqrt {{x^2} - 2x + 6} }}{{x - 1}}\) có bao nhiêu đường tiệm cận ?

  • A \(3.\)
  • B \(4.\). 
  • C \(5.\)
  • D \(2.\).

Phương pháp giải:

Sử dụng định nghĩa tiệm cận đứng, tiệm cận ngang.

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\sqrt {{x^2} - 2x + 6} }}{{x - 1}} =  + \infty \) nên TCĐ: \(x = 1\).

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {{x^2} - 2x + 6} }}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\sqrt {1 - \dfrac{2}{x} + \dfrac{6}{{{x^2}}}} }}{{x - 1}}\) \( = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {1 - \dfrac{2}{x} + \dfrac{6}{{{x^2}}}} }}{{1 - \dfrac{1}{x}}} = 1\) nên TCN: \(y = 1\)

\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} - 2x + 6} }}{{x - 1}}\)\( = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - x\sqrt {1 - \dfrac{2}{x} + \dfrac{6}{{{x^2}}}} }}{{x - 1}}\) \( = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{ - \sqrt {1 - \dfrac{2}{x} + \dfrac{6}{{{x^2}}}} }}{{1 - \dfrac{1}{x}}} =  - 1\) nên TCN \(y =  - 1\).

Vậy đồ thị hàm số có \(3\) đường tiệm cận.

Chọn A.



Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay