Câu 7 trang 210 sách bài tập Giải tích 12 Nâng cao

Cho ba số

Đề bài

Cho ba số \(\ln a,\ln b,\ln c\) (a, b, c dương và khác 1) lập thành một cấp số nhân. Chứng minh rằng ba số \({\log _a}x,{\log _b}x,{\log _c}x\) (a, b, c dương và khác 1) theo thứ tự đó cũng lấp thành một cấp số nhân.

Lời giải chi tiết

Từ giả thiết \(\ln a,\ln b,\) lập thành cấp số nhân, suy ra \({\ln ^2}b = \ln a.\ln c\)

            \({{\ln x} \over {\ln a}}.{{\ln x} \over {\ln c}} = {{{{\ln }^2}x} \over {{{\ln }^2}b}}\)

Dùng công thức đổi cơ số, ta có:

            \({\log _a}x.{\log _c}x = \log _b^2x\)

Từ đó suy ra \({\log _a}x,{\log _b}x,{\log _c}x\) lập thành một cấp số nhân.

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close