Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng :

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng :

LG a

 Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)

Lời giải chi tiết:

Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) xác định trên \(\mathbb R\).

Với mọi \(x_0\in\mathbb R\) ta có:

\(\mathop {\lim }\limits_{x \to {x_0}}f(x) = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^4} - {x^2} + 2} \right) \) \(= x_0^4 - x_0^2 + 2 = f\left( {{x_0}} \right)\)

Vậy f liên tục tại x0 nên f liên tục trên \(\mathbb R\).

LG b

Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1 ; 1) ;

Lời giải chi tiết:

Hàm số f xác định khi và chỉ khi :

\(1 - {x^2} > 0 \Leftrightarrow - 1 < x < 1\)

Vậy hàm số f xác định trên khoảng (-1 ; 1)

Với mọi x0ϵ (-1 ; 1), ta có :  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt {1 - {x^2}} }} \) \(= {1 \over {\sqrt {1 - x_0^2} }} = f\left( {{x_0}} \right)\)

Vậy hàm số f liên tục tại điểm x0. Do đó f liên tục trên khoảng  (-1 ; 1)

LG c

Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2 ; 2];

Lời giải chi tiết:

ĐKXĐ: \(8 - 2{x^2} \ge 0 \Leftrightarrow {x^2} \le 4 \Leftrightarrow  - 2 \le x \le 2\)

Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) xác định trên đoạn [-2 ; 2]

Với mọi \({x_0} \in \left( { - 2;2} \right)\) , ta có:  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \sqrt {8 - 2x_0^2} = f\left( {{x_0}} \right)\)

Vậy hàm số f liên tục trên khoảng (-2 ; 2).

Ngoài ra, ta có :

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) \) \(= \sqrt {8 - 2{{\left( { - 2} \right)}^2}} = 0 = f\left( { - 2} \right)\) nên hàm số liên tục phải tại x=-2.

\(\mathop {\lim }\limits_{x \to {{\left( { 2} \right)}^ - }}\) \( = \sqrt {8 - {{2.2}^2}} = 0 = f\left( 2 \right)\) nên hàm số liên tục trái tại x=2.

Do đó hàm số f liên tục trên đoạn [-2 ; 2]

LG d

 Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Lời giải chi tiết:

Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) xác định trên nửa khoảng  \(\left[ {{1 \over 2}; + \infty } \right)\)

Với \({x_0} \in \left( {{1 \over 2}; + \infty } \right)\) ta có  \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2x - 1} \) \(= \sqrt {2{x_0} - 1} = f\left( {{x_0}} \right)\)

Nên hàm số liên tục trên khoảng  \(\left( {{1 \over 2}; + \infty } \right)\)

Mặt khác ta có  \(\mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} f\left( x \right) \) \(= \mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} \sqrt {2x - 1} = 0 = f\left( {{1 \over 2}} \right)\)

Nên hàm số liên tục phải tại x=1/2.

Do đó hàm số f liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close