Bài 24 trang 97 SGK Hình học 10Dây cung của elip vuông góc với trục lớn tại tiêu điểm có độ dài là: Đề bài Dây cung của elip (E): \(\displaystyle {{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1 (0 < b < a)\) vuông góc với trục lớn tại tiêu điểm có độ dài là: A. \(\displaystyle {{2{c^2}} \over a}\) B. \(\displaystyle {{2{b^2}} \over a}\) C. \(\displaystyle {{2{a^2}} \over c}\) D. \(\displaystyle {{{a^2}} \over c}\) Video hướng dẫn giải Lời giải chi tiết Gọi đường thẳng \(Δ\) đi qua tiêu điểm \(F_2(c; 0)\) của elip (E) và vuông góc với trục lớn. Khi đó \(\Delta //Oy\) và \({F_2}\left( {c;0} \right) \in \Delta \) nên \(\Delta :x - c = 0\) \(Δ\) cắt \((E)\) tại hai điểm \(M\) và \(N\) có tọa độ là nghiệm của hệ phương trình: \(\begin{array}{l} \( \Rightarrow MN = \sqrt {{{\left( {c - c} \right)}^2} + {{\left( { - \dfrac{{{b^2}}}{a} - \dfrac{{{b^2}}}{a}} \right)}^2}} \) \(= \sqrt {0 + \dfrac{{4{b^4}}}{{{a^2}}}} = \dfrac{{2{b^2}}}{a}\) Vậy độ dài dây cung của \((E)\) là độ dài đoạn thẳng \(MN = {{2{b^2}} \over a}\). Chọn B HocTot.Nam.Name.Vn
|