Bài 1.50 trang 20 SBT Giải tích 12 Nâng cao

Giải bài 1.50 trang 20 sách bài tập Giải tích 12 Nâng cao. Khảo sát sự biến thiên và vẽ đồ thị của hàm số...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số

y=x42x2+3

Lời giải chi tiết:

+) TXĐ: D=R.

+) Chiều biến thiên:

limx±y=+

y=4x34xy=04x34x=04x(x21)=0[x=0x=±1

BBT:

Hàm số nghịch biến trên các khoảng (;1)(0;1).

Hàm số đồng biến trên các khoảng (1;0)(1;+).

Hàm số đạt cực đại tại x=±1,yCD=2

Hàm số đạt cực tiểu tại x=0,yCT=3.

+) Đồ thị:

Trục đối xứng: Oy.

Đồ thị hàm số cắt trục tung tại điểm (0;3).

Điểm cực đại (0;3) và điểm cực tiểu (1;2),(1;2).

LG b

Viết phương trình tiếp tuyến của đồ thị tại mỗi điểm uốn của nó

Lời giải chi tiết:

Ta có:

y

Với {U_1}\left( {\frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right) ta có y'\left( {\frac{1}{{\sqrt 3 }}} \right) =  - \frac{{8\sqrt 3 }}{9} nên phương trình tiếp tuyến là:

y =  - \frac{{8\sqrt 3 }}{9}\left( {x - \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9} hay y =  - \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}.

Với {U_2}\left( { - \frac{1}{{\sqrt 3 }};\frac{{22}}{9}} \right) ta có y'\left( { - \frac{1}{{\sqrt 3 }}} \right) = \frac{{8\sqrt 3 }}{9} nên phương trình tiếp tuyến là:

y = \frac{{8\sqrt 3 }}{9}\left( {x + \frac{1}{{\sqrt 3 }}} \right) + \frac{{22}}{9} hay y = \frac{{8\sqrt 3 }}{9}x + \frac{{10}}{3}.

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close