Các dạng toán về sự đồng biến, nghịch biến của hàm sốMột số dạng bài thường gặp Dạng 1: Tìm các khoảng đơn điệu của hàm số. Phương pháp: - Bước 1: Tìm TXĐ của hàm số. - Bước 2: Tính đạo hàm \(f'\left( x \right)\), tìm các điểm \({x_1},{x_2},...,{x_n}\) mà tại đó đạo hàm bằng \(0\) hoặc không xác định. - Bước 3: Xét dấu đạo hàm và nêu kết luận về khoảng đồng biến, nghịch biến của hàm số. + Các khoảng mà \(f'\left( x \right) > 0\) là các khoảng đồng biến của hàm số. + Các khoảng mà \(f'\left( x \right) < 0\) là các khoảng nghịch biến của hàm số. Ví dụ 1: Tìm khoảng đồng biến, nghịch biến của hàm số $y = 2{x^4} + 1$. Ta có $y' = 8{x^3},y' > 0 \Leftrightarrow x > 0$ nên hàm số đã cho đồng biến trên $\left( {0; + \infty } \right)$ \(y' < 0 \Leftrightarrow x < 0\) nên hàm số đã cho nghịch biến trên \(\left( { - \infty ;0} \right)\) Một số trường hợp đặc biệt: Dạng 2: Tìm giá trị của m để hàm số đơn điệu trên R. Phương pháp: - Bước 1: Tính $f'\left( x \right)$. - Bước 2: Nêu điều kiện của bài toán: + Hàm số $y = f\left( x \right)$ đồng biến trên $R \Leftrightarrow y' = f'\left( x \right) \geqslant 0,\forall x \in R$ và $y' = 0$ tại hữu hạn điểm. + Hàm số $y = f\left( x \right)$ nghịch biến trên $R \Leftrightarrow y' = f'\left( x \right) \leqslant 0,\forall x \in R$ và $y' = 0$ tại hữu hạn điểm. - Bước 3: Từ điều kiện trên sử dụng các kiến thức về dấu của nhị thức bậc nhất, tam thức bậc hai để tìm $m$. Ví dụ 2: Tìm tất cả các giá trị thực của tham số \(m\) sao cho hàm số \(y = \dfrac{1}{3}{x^3} - \left( {m + 1} \right){x^2} - \left( {2m + 3} \right)x + 2017\) đồng biến trên \(\mathbb{R}\). Giải: Hàm số đã cho đồng biến trên \(\mathbb{R}\) \( \Leftrightarrow y' = {x^2} - 2(m + 1)x - (2m + 3) \ge 0\) \({\rm{ }}\forall x \in \mathbb{R}.\) \( \Leftrightarrow \Delta ' = {(m + 1)^2} + (2m + 3) \le 0 \) \(\Leftrightarrow {m^2} + 4m + 4 \le 0 \Leftrightarrow m = - 2\) Cho hàm số $f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)$. Khi đó: $\begin{gathered}f\left( x \right) \geqslant 0,\forall x \in R \Leftrightarrow \left\{ \begin{gathered}a > 0 \hfill \\\Delta \leqslant 0 \hfill \\ \end{gathered} \right. \hfill \\f\left( x \right) \leqslant 0,\forall x \in R \Leftrightarrow \left\{ \begin{gathered}a < 0 \hfill \\\Delta \leqslant 0 \hfill \\\end{gathered} \right. \hfill \\ \end{gathered} $ Dạng 3: Tìm m để hàm số đơn điệu trên miền D cho trước. Phương pháp: - Bước 1: Nêu điều kiện để hàm số đơn điệu trên D: + Hàm số $y = f\left( x \right)$ đồng biến trên $D \Leftrightarrow y' = f'\left( x \right) \geqslant 0, \forall x \in D$. + Hàm số $y = f\left( x \right)$ nghịch biến trên $D \Leftrightarrow y' = f'\left( x \right) \leqslant 0, \forall x \in D$. - Bước 2: Từ điều kiện trên sử dụng các cách suy luận khác nhau cho từng bài toán để tìm $m$. Dưới đây là một trong những cách hay được sử dụng: - Rút $m$ theo $x$ sẽ xảy ra một trong hai trường hợp: $m \geqslant g\left( x \right),\forall x \in D$ hoặc $m \leqslant g\left( x \right),\forall x \in D$. - Khảo sát tính đơn điệu của hàm số $y = g\left( x \right)$ trên $D$. - Kết luận: $\begin{gathered}m \geqslant g\left( x \right),\forall x \in D \Rightarrow m \geqslant \mathop {\max }\limits_D g\left( x \right) \hfill \\m \leqslant g\left( x \right),\forall x \in D \Rightarrow m \leqslant \mathop {\min }\limits_D g\left( x \right) \hfill \\ \end{gathered} $ - Bước 3: Kết luận. Dạng 4: Tìm m để hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) đồng biến, nghịch biến trên khoảng \(\left( {\alpha ;\beta } \right)\) - Bước 1: Tính \(y'\). - Bước 2: Nêu điều kiện để hàm số đồng biến, nghịch biến: + Hàm số đồng biến trên \(\left( {\alpha ;\beta } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = f'\left( x \right) > 0,\forall x \in \left( {\alpha ;\beta } \right)\\ - \dfrac{d}{c} \notin \left( {\alpha ;\beta } \right)\end{array} \right.\) + Hàm số nghịch biến trên \(\left( {\alpha ;\beta } \right) \Leftrightarrow \left\{ \begin{array}{l}y' = f'\left( x \right) < 0,\forall x \in \left( {\alpha ;\beta } \right)\\ - \dfrac{d}{c} \notin \left( {\alpha ;\beta } \right)\end{array} \right.\) - Bước 3: Kết luận.
|