Nội dung từ Loigiaihay.Com
So sánh \({m^3}\) và \({m^2}\) với \(0 < m < 1\).
\({m^2} > {m^3}\)
\({m^2} < {m^3}\)
\({m^3} = {m^2}\)
Không so sánh được
Sử dụng phương pháp xét hiệu.
Xét hiệu \({m^2} - {m^3} = {m^2}\left( {1 - m} \right)\) ta có:
Vì \(0 < m < 1 \) nên \(1 - m > 0\)
Do đó \(m^2\left( {1 - m} \right) > 0\)
hay \({m^2} - {m^3} > 0\)
\({m^2} > {m^3}.\)
Vậy \({m^2} > {m^3}.\)
Đáp án : A
Các bài tập cùng chuyên đề
Hãy chọn câu sai:
Hãy chọn câu đúng. Nếu \(a > b\) thì:
Hãy chọn câu sai. Nếu \(a < b\) thì:
Cho \(a + 1 \le b + 2\). So sánh $2$ số \(2a + 2\) và \(2b + 4\) nào dưới đây là đúng?
Cho \( - 2x + 3 < - 2y + 3\). So sánh $x$ và $y$ . Đáp án nào sau đây là đúng?
Cho \(a > b > 0.\) So sánh \({a^2}\) và \(ab\); \({a^3}\) và \({b^3}\) .
Cho $a,b$ bất kì. Chọn câu đúng.
Cho \( - 2018a < - 2018b\). Khi đó
Với mọi \(a,b,c\) . Khẳng định nào sau đây là đúng?
Cho \(x + y > 1.\) Chọn khẳng định đúng
Bất đẳng thức nào sau đây đúng với mọi \(a > 0,b > 0:\)
Cho \(a \ge b > 0\). Khẳng định nào đúng?
Cho \(x > 0;y > 0\). Tìm khẳng định đúng trong các khẳng định sau?
\(\left( 1 \right)\;\;\;(x + y)\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) \ge 4\)
\(\left( 2 \right)\;\;\;\;{x^2} + {y^3} \le 0\)
\(\left( 3 \right)\;\;\;(x + y)\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) < 4\)
So sánh \(m\) và \({m^2}\) với \(0 < m < 1\) .