Nội dung từ Loigiaihay.Com
Một nhà tài trợ dự kiến tổ chức một buổi đi dã ngoại tập thể nhằm giúp các bạn học sinh vùng cao trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h00 ngày hôm trước đến 12h00 ngày hôm sau). Cho biết số tiền nhà tài trợ dự kiến là 30 triệu đồng và giá thuê các dịch vụ và phòng nghỉ là 17 triệu đồng 1 ngày, giá mỗi suất ăn trưa, ăn tối là 60 000 đồng và mỗi suất ăn sáng là 30 000 đồng. Hỏi có thể tổ chức cho nhiều nhất bao nhiêu bạn tham gia được?
Trải nghiệm thực tế tại một trang trại trong 1 ngày (từ 14h00 ngày hôm trước đến 12h00 ngày hôm sau) nên mỗi người tham gia sẽ phải trả tiền ăn tối của ngày hôm trước, ăn sáng và ăn trưa của buổi hôm sau. Chi phí ăn uống của mỗi người là \(60 + 60 + 30 = 150\) (nghìn đồng).
Gọi x là số bạn nhiều nhất có thể tham gia được buổi đi dã ngoại nên chi phí ăn uống cho x bạn là \(150x\) (nghìn đồng).
Tổng tiền phải trả cho chuyến dã ngoại sẽ bao gồm và giá thuê các dịch vụ và phòng nghỉ là 17 triệu đồng 1 ngày và chi phí ăn uống cho x bạn nên số tiền là \(150x + 17000\)
Chi phí dự kiến tài trợ là 30 triệu đồng nên số tiền chi trả không được vượt quá 30 triệu do đó ta có \(150x + 17000 \le 30000\). Từ đó ta tìm x, rồi kết luận bài toán.
Chi phí ăn uống của mỗi người là \(60 + 60 + 30 = 150\) (nghìn đồng).
Gọi x là số bạn nhiều nhất có thể tham gia được buổi đi dã ngoại.
Chi phí ăn uống cho x bạn là \(150x\) (nghìn đồng).
Tổng chi phí phải trả cho buổi dã ngoại có x bạn tham gia là \(150x + 17000\) (nghìn đồng)
Mà tổng số tiền tài trợ dự kiến là 30 triệu đồng nên ta có \(150x + 17000 \le 30000\) (nghìn đồng)
Ta có \(150x \le 13000\) (cộng cả hai vế với -17000)
Hay \(x \le \frac{{260}}{3}\) (nhân cả hai vế với \(\frac{1}{{150}}\))
Mà \(\frac{{260}}{3} \approx 86,\left( 6 \right)\) nên số người tham gia tối đa là 86 bạn.
Vậy có thể tổ chức nhiều nhất tối đa 86 bạn tham gia được.
Các bài tập cùng chuyên đề
Hãy chọn câu đúng. Nếu \(a > b\) thì:
Hãy chọn câu sai. Nếu \(a < b\) thì:
Cho \( - 2x + 3 < - 2y + 3\). So sánh $x$ và $y$ . Đáp án nào sau đây là đúng?
Cho \(a > b > 0.\) So sánh \({a^2}\) và \(ab\); \({a^3}\) và \({b^3}\) .
Cho \(x + y > 1.\) Chọn khẳng định đúng
So sánh \(m\) và \({m^2}\) với \(0 < m < 1\) .
Hãy chọn câu đúng. Nếu \(a > b\) thì:
Hãy chọn câu sai. Nếu \(a < b\) thì:
Cho \( - 3x - 1 < - 3y - 1\). So sánh \(x\) và \(y\). Đáp án nào sau đây là đúng?
Cho \(a > b > 0.\) So sánh \({a^3}.....{b^3}\), dấu cần điền vào chỗ chấm là:
Cho \(x + y \ge 1.\) Chọn khẳng định đúng?
So sánh \({m^3}\) và \({m^2}\) với \(0 < m < 1\).
Không thực hiện phép tính, hãy chứng minh:
a) \(2.\left( { - 7} \right) + 2023 < 2.\left( { - 1} \right) + 2023;\)
b) \(\left( { - 3} \right).\left( { - 8} \right) + 1975 > \left( { - 3} \right).\left( { - 7} \right) + 1975.\)
Cho \(a < b,\) hãy so sánh:
a) \(5a + 7\) và \(5b + 7;\)
b) \( - 3a - 9\) và \( - 3b - 9.\)
So sánh hai số a và b, nếu:
a) \(a + 1954 < b + 1954;\)
b) \( - 2a > - 2b.\)
Cho \(a > b,\) chứng minh rằng:
a) \(4a + 4 > 4b + 3;\)
b) \(1 - 3a < 3 - 3b.\)
Cho \(a > b\). Khi đó ta có:
A. \(2a > 3b.\)
B. \(2a > 2b + 1.\)
C. \(5a + 1 > 5b + 1.\)
D. \( - 3a < - 3b - 3.\)
Cho \(a < b,\) hãy so sánh:
a) \(a + b + 5\) với \(2b + 5;\)
b) \( - 2a - 3\) với \( - \left( {a + b} \right) - 3.\)
Hãy cho biết các bất đẳng thức được tạo thành khi:
a) Cộng hai vế của bất đẳng thức m > 5 với – 4;
b) Cộng hai vế của bất đẳng thức x2 \( \le \) y + 1 với 9;
c) Nhân hai vế của bất đẳng thức x > 1 với 3, rồi tiếp tục cộng với 2;
d) Cộng hai vế của bất đẳng thức m \( \le \) - 1 với – 1, rồi tiếp tục cộng với – 7.
So sánh hai số x và y trong mỗi trường hợp sau:
a) x + 5 > y + 5;
b) – 11x \( \le \) - 11y;
c) 3x – 5 < 3y – 5;
d) – 7x + 1 > - 7y + 1.
Cho hai số a, b thoả mãn a < b. Chứng tỏ:
a) b – a > 0;
b) a – 2 < b – 1
c) 2a + b < 3b
d) – 2a – 3 > - 2b – 3.
Chứng minh:
a. \(2m + 4 > 2n + 3\) với \(m > n\);
b. \(-3a + 5 > -3b + 5\) với \(a < b\).
a. Cho \(a > b > 0\). Chứng minh: \(\frac{1}{a} < \frac{1}{b}\).
b. Áp dụng kết quả trên, hãy so sánh: \(\frac{{2022}}{{2023}}\) và \(\frac{{2023}}{{2024}}\).
Chứng minh: \({x^2} + {y^2} \ge 2xy\) với mọi số thực \(x,y\).
Nồng độ cồn trong máu (tiếng Anh là Blood Alcohol Content, viết tắt: BAC) được định nghĩa là tỉ lệ phần trăm lượng rượu (ethyl alcohol hoặc ethanol) trong máu của một người. Chẳng hạn, nồng độ cồn trong máu là 0,05% nghĩa là có 50mg rượu trong 100ml máu. Càng uống nhiều rượu bia thì nồng độ cồn trong máu càng cao và càng nguy hiểm khi tham gia giao thông. Nghị định 100/2019/NĐ-CP quy định mức xử phạt vi phạm hành chính đối với người điều khiển xe gắn máy uống rượu bia khi tham gia giao thông như sau:
Giả sử nồng độ cồn trong máu của một người sau khi uống rượu bia được tính theo công thức sau: \(y = 0,076 - 0,008t\), trong đó y được tính theo đơn vị % và t là số giờ tính từ thời điểm uống rượu bia. Hỏi 3 giờ sau khi uống rượu bia, người này điều khiển xe gắn máy tham gia giao thông thì sẽ bị xử phạt ở mức độ nào?
Cho bất đẳng thức \(a > b\). Kết luận nào sau đây là không đúng?
A. \(2a > 2b\)
B. \( - a < - b\)
C. \(a - 3 < b - 3\)
D. \(a - b > 0\)
Chứng minh:
a. Nếu \(a > 5\) thì \(\frac{{a - 1}}{2} - 2 > 0\).
b. Nếu \(b > 7\) thì \(4 - \frac{{b + 3}}{5} < 2\).
Cho \(4,2 < a < 4,3\). Chứng minh: \(13,8 < 3a + 1,2 < 14,1\).
Cho \(a \ge 2\). Chứng minh:
a. \({a^2} \ge 2a\)
b. \({\left( {a + 1} \right)^2} \ge 4a + 1\)
Chứng minh nửa chu vi của một tam giác lớn hơn độ dài mỗi cạnh của tam giác đó.