Nội dung từ Loigiaihay.Com
Cho hình thang vuông ABCD, \(\left( {\widehat A = \widehat D = {{90}^0}} \right)\) có \(AB = 4cm,CD = 9cm\) và \(BC = 13cm.\) Khoảng cách từ M đến BC bằng:
Kẻ BK vuông góc với CD tại K.
Tứ giác ABKD có: \(\widehat A = \widehat D = \widehat {BKD} = {90^0}\) nên tứ giác ABKD là hình chữ nhật, do đó, \(KC = DC - DK = 5cm\)
Áp dụng định lý Pythagore vào tam giác BKC vuông tại K ta có:
\(B{C^2} = C{K^2} + K{B^2} \Rightarrow K{B^2} = 144 \Rightarrow KB = 12cm\)
Vì tứ giác ABKD là hình chữ nhật nên \(AD = BK = 12cm\) do đó \(AM = MD = 6cm\)
Xét tam giác ABM và tam giác DMC có:
\(\widehat {BAM} = \widehat {MDC} = {90^0},\frac{{AB}}{{DM}} = \frac{{AM}}{{DC}}\left( { = \frac{2}{3}} \right)\)
Do đó, \(\Delta ABM \backsim \Delta DMC\)
Suy ra, \(\widehat {AMB} = \widehat {DCM}\)
Mà \(\widehat {DMC} + \widehat {MCD} = {90^0} \Rightarrow \widehat {DMC} + \widehat {AMB} = {90^0}\)
Ta có: \(\widehat {DMC} + \widehat {BMC} + \widehat {AMB} = {180^0} \Rightarrow \widehat {BMC} = {90^0}\)
Do đó, tam giác BMC vuông tại M.
Kẻ MH vuông góc với BC tại H thì MH là khoảng cách từ M đến BC.
Áp dụng định lý Pythagore vào hai tam giác ABM và tam giác DMC ta được:
\(\left\{ \begin{array}{l}B{M^2} = M{A^2} + A{B^2} = {6^2} + {4^2} = 52\\M{C^2} = C{D^2} + D{M^2} = {9^2} + {6^2} = 117\end{array} \right.\)
Do đó, \(BM = 2\sqrt {13} cm,MC = 3\sqrt {13} cm\)
Diện tích tam giác BMC vuông tại M có:
\(\frac{1}{2}BM.MC = \frac{1}{2}MH.BC \Rightarrow 2\sqrt {13} .3\sqrt {13} = 13.MH \Rightarrow MH = 6cm\)
Đáp án : C
Các bài tập cùng chuyên đề
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{BC}}{{FE}}\)
Chọn đáp án đúng
Hai tam giác vuông đồng dạng với nhau khi:
Cho hai hình sau:
Chọn đáp án đúng.
Cho tam giác ABC vuông tại A có: \(AB = 3cm,BC = 5cm\) và tam giác MNP vuông tại M có \(MN = 6cm,NP = 10cm.\) Khi đó,
Cho hai tam giác vuông ABC và ADE có các kích thước như hình dưới. Khẳng định nào sau đây đúng?
Cho tứ giác ABCD có \(AB = 9cm,\;AC = 6cm,AD = 4,\widehat {ADC} = \widehat {ACB} = {90^0}\) (như hình vẽ)
Khẳng định nào sau đây đúng?
Cho hình vẽ sau:
Khẳng định nào sau đây là đúng?
Cho tam giác ABC vuông tại A, \(AC = 4cm,BC = 6cm.\) Kẻ tia Cx vuông góc với BC (tia Cx và điểm A nằm khác phía so với đường thẳng BC). Lấy trên tia Cx điểm D sao cho \(BD = 9cm.\) Số đo góc ABD bằng bao nhiêu độ?
Tam giác ABH vuông tại H có \(AB = 20cm,BH = 12cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Khi đó, số đo góc BAC bằng:
Cho tam giác ABC cân tại A, đường cao AH và M là trọng tâm của tam giác ABC; tam giác A’B’C’ cân tại A’, đường cao A’H và M’ là trọng tâm tâm của tam giác A’B’C’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{AB}}{{A'B'}} = 3.\) Chọn đáp án đúng.
Cho tam giác ABC vuông tại A, \(AC = 4cm,BC = 6cm.\)Kẻ tia Cx vuông góc với BC (tia Cx và điểm A nằm khác phía so với đường thẳng BC). Lấy trên tia Cx điểm D sao cho \(BD = 9cm.\) Diện tích tam giác ABD bằng:
Tam giác ABH vuông tại H có \(AB = 25cm,BH = 15cm.\) Trên tia đối của tia HB lấy điểm C sao cho \(AC = \frac{5}{3}AH.\) Chu vi tam giác AHC là:
Cho hình vẽ:
Chu vi tam giác DMC là:
Cho tam giác ABC cân tại A có chu vi bằng 60cm và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{BH}}{{B'H'}} = \frac{{BC}}{{B'C'}} = \frac{3}{2}\). Chu vi tam giác A’B’C’ là:
Cho tam giác ABC cân tại A và tam giác A’B’C’ cân tại A’, các đường cao BH và B’H’. Biết rằng \(\frac{{CH}}{{C'H'}} = \frac{{BC}}{{B'C'}}\). Biết rằng \(\widehat {BAC} = 4\widehat {A'C'B'}.\) Chọn đáp án đúng.
Cho điểm B nằm trên đoạn thẳng AC sao cho \(AB = 6cm,BC = 24cm.\) Vẽ về một phía của AC tia Ax và Cy vuông góc với AC. Trên tia Ax lấy điểm E sao cho \(EB = 10cm,\) trên tia Cy lấy điểm D sao cho \(BD = 30cm.\)
Cho các khẳng định sau:
1. Tam giác EBD là tam giác nhọn.
2. Diện tích tam giác EBD bằng \(150c{m^2}\).
3. Chu vi tam giác EBD bằng 60cm.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Cho hai hình chữ nhật ABCD và A’B’C’D’ thỏa mãn \(AC = 3AB,B'D' = 3A'B'\)
Nếu \(AB = 2A'B'\) và diện tích hình chữ nhật ABCD là \(12{m^2}\) thì diện tích hình chữ nhật A’B’C’D’ là bao nhiêu?
Cho tam giác ABC vuông tại A và tam giác DEF vuông tại D có: \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\)
Chọn đáp án đúng
Hai tam giác vuông đồng dạng với nhau khi:
Cho hình vẽ sau:
Chọn đáp án đúng.