Nội dung từ Loigiaihay.Com
Cho góc \(\widehat {xOy} = {60^0},\) \(A\) là điểm trên tia \(Ox,\,B\) là điểm trên tia \(Oy\) \((A,B\) không trùng với \(O).\)
Chọn câu đúng nhất.
\(OA + OB \le 2AB\)
\(OA + OB = 2AB\) khi \(OA = OB.\)
\(OA + OB \ge 2AB\)
Cả A, B đều đúng.
Kẻ tia phân giác \(Ot\) của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{{{60}^o}}}{2} = {30^o}.\)
Gọi \(I\) là giao của \(Ot\) và \(AB\). Kẻ \(AH \bot Ot, BK \bot Ot\)
Xét \(\Delta OAH\) có \(\widehat {AOH} = {30^o}\) nên \(OA = 2AH.\) Từ đó so sánh \(OA\) và \(AI\) (1)
Xét \(\Delta OBK\) có \(\widehat {BOK} = {30^o}\) nên \(OB = 2BK.\) Từ đó so sánh \(OB\) và \(BI\) (2)
Từ (1) và (2) ta so sánh được \(OA + OB\) với \(2AB.\) Từ đó xét khi nào dấu “=” xảy ra.
* Chú ý: Trong tam giác vuông, cạnh đối diện với góc \({30^o}\) bằng nửa cạnh huyền.
Kẻ tia phân giác \(Ot\) của \(\widehat {xOy}\) nên \(\widehat {xOt} = \widehat {yOt} = \dfrac{{\widehat {xOy}}}{2} = \dfrac{{{{60}^o}}}{2} = {30^o}.\)
Gọi \(I\) là giao của \(Ot\) và \(AB\). Kẻ \(AH \bot Ot, BK \bot Ot\)
Xét \(\Delta OAH\) có \(\widehat {AOH} = {30^o}\) nên \(OA = 2AH.\)
Vì \(AH,\,AI\) lần lượt là đường vuông góc, đường xiên kẻ từ \(A\) đến \(Ot\) nên \(AH \le AI\) do đó \(OA \le 2AI\) (1)
Xét \(\Delta OBK\) có \(\widehat {BOK} = {30^o}\) nên \(OB = 2BK.\)
Vì \(BK,\,BI\) lần lượt là đường vuông góc, đường xiên kẻ từ \(B\) đến \(Ot\) nên \(BK \le BI\) do đó \(OB \le 2BI\) (2)
Cộng (1) với (2) theo vế với vế ta được:
\(OA + OB \le 2AI + 2BI = 2\left( {AI + BI} \right) = 2AB\)
Dấu “=” xảy ra khi và chỉ khi \(H,\,I,K\) trùng nhau hay \(AB \bot Ot\) suy ra \(\widehat {AIO} = \widehat {BIO} = {90^o}.\)
Xét \(\Delta OAI\) và \(\Delta OBI\) có:
\(\widehat {AIO} = \widehat {BIO} = {90^o}\)
\(\widehat {AOI} = \widehat {BOI}\) (vì \(Ot\) là phân giác của \(\widehat {xOy}\))
\(OI\) cạnh chung
\( \Rightarrow \Delta OAI = \Delta OBI\) (g.c.g)
\( \Rightarrow OA = OB\) (hai cạnh tương ứng).
Vậy \(OA + OB = 2AB\) khi \(OA = OB.\)
Đáp án : D
Các bài tập cùng chuyên đề
Cho ba điểm \(A,\,B,\,C\) thẳng hàng, \(B\) nằm giữa \(A\) và \(C\). Trên đường thẳng vuông góc với \(AC\) tại \(B\) ta lấy điểm \(H\). Khi đó
Cho \(\Delta ABC\) vuông tại $A,M$ là trung điểm của $AC.$ Gọi $D,E$ lần lượt là hình chiếu của $A$ và $C$ xuống đường thẳng $BM.$ So sánh \(BD + BE\) và $AB.$
Cho \(\Delta ABC\) có $CE$ và $BD$ là hai đường cao. So sánh \(BD + CE\) và \(AB + AC\) ?
Cho \(\Delta ABC\) vuông tại $A.$ Trên cạnh $AB$ và $AC$ lấy tương ứng hai điểm $D$ và $E$ ($D,E$ không trùng với các đỉnh của \(\Delta ABC\)). Chọn đáp án đúng nhất.
Cho \(\Delta ABC\) có \(\widehat C = {90^0}\), \(AC < BC\) , kẻ \(CH \bot AB\). Trên các cạnh $AB$ và $AC$ lấy tương ứng hai điểm $M$ và $N$ sao cho \(BM = BC,CN = CH\). Chọn câu đúng nhất.
Em hãy chọn đáp án sai trong các đáp án sau: