Bài 8 trang 55 SBT Hình học 12 Nâng cao

Giải bài 8 trang 55 sách bài tập Hình học 12 Nâng cao. Cho hình chóp S.ABC có ...

Đề bài

Cho hình chóp S.ABC có SAmp(ABC),AB=c,AC=b , ^BAC=α. Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SBSC. Chứng mình rằng các điểm A, B, C, B1,C1 cùng thuộc một mặt cầu và tính bán kính của mặt cầu đó theo b, c,α.

Lời giải chi tiết

Gọi AD là đường kính của đường tròn ngoại tiếp tam giác ABC, khi đó CDAC, mặt khác CDSA, từ đó CDmp(SAC), vậy CDAC1.

Theo giả thiết AC1SC nên AC1C1D.

Tương tự như trên, ta cũng có ^ABD=900,^AB1D=900.

Vậy AD là đường kính của mặt cầu đi qua các điểm A, B, C, B1, C1.

Bán kính R của mặt cầu đó cũng là bán kính đường tròn ngoại tiếp tam giác ABC, do đó BCsinA=2R, mặt khác

BC2=AB2+AC22AB.AC.cosA hay BC=b2+c22bc.cosα,

Vậy R=b2+c22bc.cosα,2sinα

Chú ý. Có thể chứng minh các điểm A, B, C, B1, C1 cùng thuộc một mặt cầu như sau :

Xét các tam giác vuông SAB, SAC, ta có SA2=SB.SB1,SA2=SC.SC1,từ đó SB.SB1=SC.SC1, suy ra  B, C, B1, Ccùng thuộc một đường tròn.

Như vậy, hình chóp A.BCC1B1 có đáy BCC1B1 có đường tròn ngoại tiếp nên hình chóp đó có mặt cầu ngoại tiếp, tức là các điểm A, B, C, B1, C1 cùng thuộc một mặt cầu.

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close