Bài 7.16 trang 50 SGK Toán 11 tập 2 - Cùng khám phá

Cho đường cong ( C ) : \(y = \frac{{x - 3}}{{x + 1}}\)

Đề bài

Cho đường cong ( C ) : \(y = \frac{{x - 3}}{{x + 1}}\)

a, Viết phương trình tiếp tuyến của ( C ) tại điểm M( 1, -1)

b, Viết phương trình tiếp tuyến của ( C) tại giao điểm ( C ) với trục hoành

Phương pháp giải - Xem chi tiết

Tính \({y'}\) và sử dụng phương trình tiếp tuyến \(y = {f'}({x_0}).(x - {x_0}) + {y_0}\)

Lời giải chi tiết

Ta có \(y' = \left( {\frac{{x - 3}}{{x + 1}}} \right)' = \frac{{(x - 3)'.(x + 1) - (x - 3).(x + 1)'}}{{{{(x + 1)}^2}}} = \frac{{x + 1 - (x - 3)}}{{{{(x + 1)}^2}}} = \frac{4}{{{{(x + 1)}^2}}}\)

a, \(y'(1) = \frac{4}{{{{(1 + 1)}^2}}} = 1\)

Phương trình tiếp tuyến tại điểm M( 1, -1) là:

y= 1.(x – 1) -1 = x – 2

b, Giao điểm của ( C ) với Ox là: \(\frac{{x - 3}}{{x + 1}} = 0 \Rightarrow x = 3\)

\(y'(3) = \frac{4}{{{{(3 + 1)}^2}}} = \frac{1}{4}\)

Phương trình tiếp tuyến tại điểm M ( 3,0 ) là :

 \(y = \frac{1}{4}(x - 3)\)

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close