Bài 5 trang 70 SGK Toán 11 tập 1 - Chân trời sáng tạoXét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Xét quá trình tạo ra hình có chu vi vô cực và diện tích bằng 0 như sau: Bắt đầu bằng một hình vuông \({H_0}\) cạnh bằng 1 đơn vị độ dài (xem Hình 6a). Chia hình vuông \({H_0}\) thành chính hình vuông bằng nhau, bỏ đi bốn hình vuông, nhận được hình \({H_1}\) (xem Hình 6b). Tiếp theo, chia mỗi hình vuông của \({H_1}\) thành chín hình vuông, rồi bỏ đi bốn hình vuông, nhận được hình \({H_2}\) (xem Hình 6c). Tiếp tục quá trình này, ta nhận được một dãy hình \({H_n}\left( {n = 1,2,3,...} \right)\). Ta có: \({H_1}\) có 5 hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{3}\); \({H_2}\) có \(5.5 = {5^2}\) hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{3}.\frac{1}{3} = \frac{1}{{{3^2}}}\);… Từ đó, nhận được hình \({H_n}\) có \({5^n}\) hình vuông, mỗi hình vuông có cạnh bằng \(\frac{1}{{{3^n}}}\). a) Tính diện tích \({S_n}\) của \({H_n}\) và tính \(\lim {S_n}\). b) Tính chu vi \({p_n}\) của \({H_n}\) và tính \(\lim {p_n}\). (Quá trình trên tạo nên một hình, gọi là một fractal, được coi là có diện tích \(\lim {S_n}\) và chu vi \(\lim {p_n}\)). Phương pháp giải - Xem chi tiết Áp dụng công thức tính tổng của cấp số nhân lùi vô hạn có số hạng đầu \({u_1}\) và công bội \(q\): \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\) và công thức tính giới hạn cơ bản: \(\lim {q^n} = 0\), với \(q\) là số thực thỏa mãn \(\left| q \right| < 1\). Lời giải chi tiết a) Ta có: Diện tích \({H_1}\) bằng \(5.{\left( {\frac{1}{3}} \right)^2}\); Diện tích \({H_2}\) bằng \({5^2}.{\left( {{{\left( {\frac{1}{3}} \right)}^2}} \right)^2} = {5^2}.{\left( {\frac{1}{{{3^2}}}} \right)^2}\); Diện tích \({H_3}\) bằng \({5^3}.{\left( {{{\left( {\frac{1}{3}} \right)}^3}} \right)^2} = {5^3}.{\left( {\frac{1}{{{3^3}}}} \right)^2}\); … Diện tích \({H_n}\) bằng \({5^n}.{\left( {\frac{1}{{{3^n}}}} \right)^2}\). \({S_n} = {5^n}.{\left( {\frac{1}{{{3^n}}}} \right)^2} = {5^n}.\frac{1}{{{9^n}}} = {\left( {\frac{5}{9}} \right)^n},n = 1,2,3,...\) \(\lim {S_n} = \lim {\left( {\frac{5}{9}} \right)^n} = 0\) b) Ta có: Chu vi \({H_1}\) bằng \(5.4.\frac{1}{3} = 4.\frac{5}{3}\); Chu vi \({H_2}\) bằng \({5^2}.4.{\left( {\frac{1}{3}} \right)^2} = 4.{\left( {\frac{5}{3}} \right)^2}\); … Chu vi \({H_n}\) bằng \({5^n}.4.{\left( {\frac{1}{3}} \right)^n} = 4.{\left( {\frac{5}{3}} \right)^n}\). \({p_n} = {5^n}.4.\frac{1}{{{3^n}}} = 4.{\left( {\frac{5}{3}} \right)^n},n = 1,2,3,...\) \(\lim {p_n} = \lim \left( {4.{{\left( {\frac{5}{3}} \right)}^n}} \right)\) Vì \(\lim \frac{1}{{4.{{\left( {\frac{5}{3}} \right)}^n}}} = \frac{1}{4}.\lim {\left( {\frac{3}{5}} \right)^n} = 0\) và \(4.{\left( {\frac{5}{3}} \right)^n} > 0\) với mọi \(n\) nên \(\lim {p_n} = \lim \left( {4.{{\left( {\frac{5}{3}} \right)}^n}} \right) = + \infty \).
|