Giải bài 5 trang 10 SGK Giải tích 12

Chứng minh các bất đẳng thức sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh các bất đẳng thức sau:

tanx>x  (0<x<π2).tanx>x  (0<x<π2).

Phương pháp giải:

+) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số y(x)y(x) với 0.

+) Tính đạo hàm bậc nhất của hàm số y(x)y(x) và khảo sát hàm số y(x)y(x)  trên các khoảng đề bài đã cho.

+) Dựa vào tính đơn điệu của hàm số để kết luận bài toán.

Lời giải chi tiết:

tanx>x  (0<x<π2).tanx>x  (0<x<π2).

Xét hàm số: y=f(x)=tanxxy=f(x)=tanxx với x(0; π2).x(0; π2).

Ta có: y=1cos2x1=1cos2xcos2x=sin2xcos2x =tan2x>0,x(0;π2)

Vậy hàm số luôn đồng biến trên (0;π2).

 x(0;π2)ta cóf(x)>f(0)tanxx>tan00tanxx>0tanx>x  (dpcm).

Quảng cáo

Lộ trình SUN 2026

LG b

tanx>x+x33  (0<x<π2).

Phương pháp giải:

+) Chuyển vế tất cả các biểu thức chứa biến sang vế trái sau đó so sánh hàm số y(x) với 0.

+) Tính đạo hàm bậc nhất của hàm số y(x) và khảo sát hàm số y(x)  trên các khoảng đề bài đã cho.

+) Dựa vào tính đơn điệu của hàm số để kết luận bài toán.

Lời giải chi tiết:

tanx>x+x33  (0<x<π2).

Xét hàm số: y=g(x)=tanxxx33 với x(0; π2).

Ta có: y=1cos2x1x2=1+tan2x1x2=tan2xx2=(tanxx)(tanx+x).

Với  x(0;π2)tanx>0 nên ta có: tanx+x>0  và tanxx>0 (theo câu a) y>0x(0;π2)

Vậy hàm số y=g(x) đồng biến trên (0;π2)g(x)>g(0).

tanxxx33>tan000tanxxx33>0tanx>x+x33   (dpcm).

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

close