Bài 48 trang 93 SGK Toán 8 tập 1Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh Đề bài Tứ giác \(ABCD\) có \(E, F, G, H\) theo thứ tự là trung điểm của các cạnh \(AB, BC, CD, DA.\) Tứ giác \(EFGH\) là hình gì ? Vì sao ? Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng: +) Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy. +) Dấu hiệu nhận biết hình bình hành: Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành. Lời giải chi tiết
Xét \(\Delta ABC\) có \(EA=EB\) và \( FB=FC\) nên \(EF\) là đường trung bình của \(\Delta ABC\) suy ra \( EF // AC\) và \(EF = \dfrac{{AC}}{2}\) (1) Xét \(\Delta ADC\) có \(HA=HD\) và \(GD=GC\) nên \(HG\) là đường trung bình của \(\Delta ADC\) suy ra \( HG // AC\) và \(HG = \dfrac{{AC}}{2}\) (2) Từ (1) và (2) suy ra \( EF//HG\) và \(EF = HG\) Tứ giác \(EFGH\) có \( EF//HG\) và \(EF = HG\) nên là hình bình hành (tứ giác có 2 cạnh đối song song và bằng nhau) HocTot.Nam.Name.Vn
|