Bài 44 trang 63 SBT Hình học 12 Nâng caoGiải bài 44 trang 63 sách bài tập Hình học 12 Nâng cao. Trong tất cả các hình nón nội tiếp hình cầu bán kính R... Đề bài Trong tất cả các hình nón nội tiếp hình cầu bán kính R, tìm hình nón có diện tích xung quanh lớn nhất. Với hình nón ấy, xét hình trụ nội tiếp hình nón. Tìm chiều cao của hình trụ đó, biết rằng thiết diện qua trục của hình trụ là hình vuông Lời giải chi tiết ∙ Xét mp(α) qua trục SO của hình nón thì (α) cắt hình nón theo tam giác cân SAB, (α) cắt mặt cầu đã cho theo thiết diện là hình vuông MNPQ (hình vuông nội tiếp ΔSAB). Đặt ^SAB =α thì SA = SB = 2Rsinα. Và OB=SBcosα=Rsin2α. Từ đó diện tích xung quanh của hình nón là Sxq=πR.sin2α.2Rsinα=4πR2sin2αcosα =4πR2(1−cos2α)cosα. Đặt f(t)=(1−t2)t với 0<t=cosα<1. Dễ thấy f(t) đạt giá trị lớn nhất khi và chỉ khi t=1√3=cosα⇒tanα=√2. ⇒tanα=√2. Khi ấy SOOB=tanα=√2, tức là SO=OB√2.(∗) Vậy hình nón có đường cao và bán kính đáy thỏa mãn điều kiện (∗) nội tiếp mặt cầu đã chốc diện tích xung quanh lớn nhất. Dễ thấy SO1SO=MQAB=xAB (đặt MQ = MN = x). Khi ấy SO−xSO=xAB⇒SO−x=SOAB.x=√22x. Từ đó SO=x2(2+√2). (1) Mặt khác SO=OBtanα=Rsin2α.tanα=2Rsin2α. (2) Từ (1) và (2) suy ra x=4Rsin2α2+√2=4R.232+√2=8R3(2+√2)=43R(2−√2). Vậy chiều cao của hình trụ phải tìm là 4R3(2−√2). HocTot.Nam.Name.Vn
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|