Bài 3 trang 49 Tài liệu dạy – học Toán 9 tập 2

Giải bài tập Giải các phương trình sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho HocTot.Nam.Name.Vn và nhận về những phần quà hấp dẫn

Đề bài

Giải các phương trình sau:

a) \(5{x^2} - 7x = 0\)              

b) \(6{x^2} + 3\sqrt 2 x = 0\)

c) \( - 8{x^2} + 3x = 0\)           

d) \({x^2} - 12 = 0\)

e) \(5{x^2} - 15 = 0\) 

f) \(\dfrac{2}{3}{x^2} - \dfrac{4}{{15}} = 0\)

Phương pháp giải - Xem chi tiết

Đưa phương trình đã cho về dạng phương trình tích \(a.b = 0 \Leftrightarrow \left[ \begin{array}{l}a = 0\\b = 0\end{array} \right.\)

Lời giải chi tiết

a) \(5{x^2} - 7x = 0 \)

\(\Leftrightarrow x\left( {5x - 7} \right) = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\5x - 7 = 0\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{7}{5}\end{array} \right.\)

b) \(6{x^2} + 3\sqrt 2 x = 0\)

\(\Leftrightarrow 3x\left( {2x + \sqrt 2 } \right) = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}3x = 0\\2x + \sqrt 2  = 0\end{array} \right.\)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{{\sqrt 2 }}{2}\end{array} \right.\)

c) \( - 8{x^2} + 3x = 0\)

\(\Leftrightarrow x\left( { - 8x + 3} \right) = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\ - 8x + 3 = 0\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{3}{8}\end{array} \right.\)

d) \({x^2} - 12 = 0\)

\(\Leftrightarrow {x^2} = 12 \)

\(\Leftrightarrow x =  \pm 2\sqrt 3 \)

e) \(5{x^2} - 15 = 0 \)

\(\Leftrightarrow 5{x^2} = 15\)

\(\Leftrightarrow {x^2} = 3\)

\(\Leftrightarrow x =  \pm \sqrt 3 \)

f) \(\dfrac{2}{3}{x^2} - \dfrac{4}{{15}} = 0\)

\(\Leftrightarrow \dfrac{2}{3}{x^2} = \dfrac{4}{{15}}\)

\(\Leftrightarrow {x^2} = \dfrac{2}{5} \)

\(\Leftrightarrow x =  \pm \dfrac{{\sqrt {10} }}{5}\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

close