Bài 21 trang 12 SGK Toán 8 tập 1Viết các đa thức sau dưới dạng bình phương của một tổng Đề bài Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu: a) \(9{x^2}-6x + 1\); b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1\). Hãy nêu một đề bài tương tự. Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng hằng đẳng thức bình phương của một tổng, bình phương của một hiệu. \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) Lời giải chi tiết a) \(9{x^2}-6x + 1 = {\left( {3x} \right)^2}-2.3x.1 + {1^2}\) \( = {\left( {3x-1} \right)^2}\) Hoặc \(9{x^2}-6x + 1 = 1-6x + 9{x^2} \) \(= {1^2} - 2.1.3x + {\left( {3x} \right)^2} = {\left( {1-3x} \right)^2}\) b) \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \) \(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\) Áp dụng hằng đẳng thức thứ nhất \( {A^2} + 2AB + {B^2} = {\left( {A + B} \right)^2}\) với \(A=2x+3y\); \(B=1\) ta được: \({\left( {2x{\rm{ }} + {\rm{ }}3y} \right)^2} + 2.\left( {2x + 3y} \right) + 1 \) \(= {\left( {2x + 3y} \right)^2} + 2.\left( {2x + 3y} \right).1 + {1^2}\) \( = {\left[ {\left( {2x{\rm{ }} + {\rm{ }}3y} \right) + 1} \right]^2} = {\left( {2x{\rm{ }} + {\rm{ }}3y + 1} \right)^2}\) Đề bài tương tự: \(1 + 2\left( {x + 2y} \right) + {\left( {x + 2y} \right)^2}\); \(4{x^2}-12x + 9\); …
|