Bài 1.16 trang 19 SGK Toán 11 tập 1 - Cùng khám pháMột vận động viên bắn súng nằm trên mặt đất để ngắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất 20 m tại một góc ngắm (góc hợp bởi phương bắn và phương ngang). Đề bài Một vận động viên bắn súng nằm trên mặt đất để ngắm bắn các mục tiêu khác nhau trên một bức tường thẳng đứng. Vận động viên bắn trúng một mục tiêu cách mặt đất 20 m tại một góc ngắm (góc hợp bởi phương bắn và phương ngang). Nếu tăng góc ngắm đó lên hai lần thì vận động viên bắn trúng một mục tiêu cách mặt đất 45 m. Tính khoảng cách từ vận động viên đến bức tường. Phương pháp giải - Xem chi tiết Áp dụng tỉ số lượng giác: Và công thức nhân đôi. Lời giải chi tiết Gọi A là vị trí vận động viên nằm, B là mục tiêu cách mặt đất 20m, C là mục tiêu cách mặt đất 45m và H như trên hình \(\begin{array}{l}\tan \widehat {BAH} = \frac{{BH}}{{AH}} = \frac{{20}}{{AH}}\\\tan \widehat {CAH} = \frac{{CH}}{{AH}} = \frac{{45}}{{AH}}\\\widehat {CAH} = 2\widehat {BAH}\\ \Rightarrow \tan \left( {2.\widehat {BAH}} \right) = \frac{{45}}{{AH}}\\ \Leftrightarrow \frac{{2\tan \widehat {BAH}}}{{1 - {{\tan }^2}\widehat {BAH}}} = \frac{{45}}{{AH}}\\ \Leftrightarrow \left( {2.\frac{{20}}{{AH}}} \right):\left[ {1 - {{\left( {\frac{{20}}{{AH}}} \right)}^2}} \right] = \frac{{45}}{{AH}}\\ \Leftrightarrow \frac{{40}}{{AH}}:\left( {1 - \frac{{400}}{{A{H^2}}}} \right) = \frac{{45}}{{AH}}\\ \Leftrightarrow \frac{{40}}{{AH}}:\frac{{A{H^2} - 400}}{{A{H^2}}} = \frac{{45}}{{AH}}\\ \Leftrightarrow \frac{{40}}{{AH}}.\frac{{A{H^2}}}{{A{H^2} - 400}} = \frac{{45}}{{AH}}\\ \Leftrightarrow \frac{{40AH}}{{A{H^2} - 400}} = \frac{{45}}{{AH}}\\ \Leftrightarrow 40A{H^2} = 45A{H^2} - 18000\\ \Leftrightarrow A{H^2} = 3600\\ \Rightarrow AH = 60\end{array}\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|