Câu hỏi 6 trang 145 SGK Giải tích 12

Phát biểu định lí về quy tắc logarit, công thức đổi cơ số.

Đề bài

Phát biểu định lí về quy tắc logarit, công thức đổi cơ số.

Lời giải chi tiết

*Lôgarit và các phép toán:

Với \(\forall a,{b_1},{b_2} > 0,a \ne 1\) ta có:

+) \({\log _a}\left( {{b_1}{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}\)

+) \({\log _a}\left( {\dfrac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\)

và \(∀a,b >0\) (a\(\ne\)1),  \(∀α\), \({\log _a}{b^\alpha } = \alpha {\log _a}b,{\log _a}\root n \of b  = {1 \over n}{\log _a}b\)

*Đổi cơ số:

\(∀a,b,c  >0\) (a, c\(\ne\)1), \({\log _a}b = {{{{\log }_c}b} \over {{{\log }_c}a}}\).

Đặc biệt \(∀a,b\) >0 (a,b \(\ne\)1) \({\log _a}b = {1 \over {{{\log }_b}a}}\)

và \(∀a,b >0\) (a\(\ne\)1),\( ∀α, β\) (\(α\ne 0\)), \({\log _{{a^\alpha }}}b = {1 \over \alpha }{\log _a}b,{\log _{{a^\alpha }}}{b^\beta } = {\beta  \over \alpha }{\log _a}b\).

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close