Lý thuyết Tỉ lệ thức - Dãy tỉ số bằng nhau Toán 7 Chân trời sáng tạo

Định nghĩa tỉ lệ thức

Tổng hợp đề thi học kì 2 lớp 7 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Khoa học tự nhiên...

I. Các kiến thức cần nhớ

1. Tỉ lệ thức

Định nghĩa tỉ lệ thức

+ Tỉ lệ thức là đẳng thức của hai tỉ số \(\dfrac{a}{b} = \dfrac{c}{d}\)

+ Tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\) còn được viết là \(a:b = c:d\)

Ví dụ: \(\dfrac{{28}}{{24}} = \dfrac{7}{6};\)\(\dfrac{3}{{10}} = \dfrac{{2,1}}{7}\)

Tính chất tỉ lệ thức

+ Tính chất 1 (tính chất cơ bản của tỉ lệ thức)

Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)

+ Tính chất 2 (điều kiện để bốn số lập thành tỉ lệ thức): Nếu \(ad=bc\) và \(a,b,c,d \ne 0\) thì ta có các tỉ lệ thức

\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)

Ví dụ: Ta có \(\dfrac{3}{6} = \dfrac{9}{{18}} \Rightarrow 3.18 = 9.6\left( { = 54} \right)\)

Vì \(4.9 = 3.12(=36)\) nên ta có các tỉ lệ thức sau: \(\dfrac{4}{3} = \dfrac{{12}}{9};\,\dfrac{3}{4} = \dfrac{9}{{12}};\dfrac{4}{{12}} = \dfrac{3}{9};\dfrac{{12}}{4} = \dfrac{9}{3}\) 

2. Tính chất dãy tỉ số bằng nhau

* Ta có \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\)

* Từ dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\) ta suy ra:

\(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\)

Với điều kiện các tỉ số đều có nghĩa.

Ví dụ: \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 + 5}}{{6 + 3}} = \dfrac{{15}}{9}\)

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 - 5}}{{6 -3}}\)

* Mở rộng

$\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$

Ví dụ:

\(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{2.10 + 3.5}}{{2.6 + 3.3}} = \dfrac{{35}}{{21}}\)

Chú ý:

Khi nói các số \(x,\,y,\,z\) tỉ lệ với các số \(a,\,b,\,c\) tức là ta có \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}\). Ta cũng viết \(x:y:z = a:b:c\)

II. Các dạng toán thường gặp

Dạng 1: Lập tỉ lệ thức từ đẳng thức cho trước

Phương pháp:

Ta sử dụng: Nếu  \(a.d = b.c\) thì

\(\dfrac{a}{b} = \dfrac{c}{d}\); \(\dfrac{a}{c} = \dfrac{b}{d}\); \(\dfrac{d}{b} = \dfrac{c}{a};\) \(\dfrac{d}{c} = \dfrac{b}{a}.\)

Dạng 2: Tìm x, y

Phương pháp:

Sử dụng tính chất cơ bản của tỉ lệ thức: Nếu \(\dfrac{a}{b} = \dfrac{c}{d}\) thì \(a.d = b.c\)

Trong một tỉ lệ thức ta có thể tìm một số hạng chưa biết khi biết ba số hạng còn lại.

\(\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow a = \dfrac{{bc}}{d};\,b = \dfrac{{ad}}{c};\)\(c = \dfrac{{ad}}{b};\,d = \dfrac{{bc}}{a}\) .

Ví dụ:  Tìm x biết \(\dfrac{x}{2} = \dfrac{8}{6}\)

Ta có: 

\(\begin{array}{l}
\dfrac{x}{2} = \dfrac{8}{6}\\
\Rightarrow x.6 = 8.2\\
\Rightarrow x = \dfrac{{16}}{6}\\
\Rightarrow x = \dfrac{8}{3}
\end{array}\)

Dạng 3: Chứng minh các tỉ lệ thức

Phương pháp:

Dựa vào các tính chất của tỉ lệ thức và biến đổi linh hoạt để chứng minh.

Dạng 4: Tìm hai số $x;y$ biết tổng (hoặc hiệu) và tỉ số của chúng.

Phương pháp giải:

* Để tìm hai số \(x;y\) khi biết tổng $x + y = s$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x + y}}{{a + b}} = \dfrac{s}{{a + b}}\)

Từ đó \(x = \dfrac{s}{{a + b}}.a;\,y = \dfrac{s}{{a + b}}.b\) .

* Để tìm hai số \(x;y\) khi biết hiệu $x - y = p$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau

Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x - y}}{{a - b}} = \dfrac{p}{{a - b}}\)

Từ đó \(x = \dfrac{p}{{a - b}}.a;\)\(y = \dfrac{p}{{a - b}}.b\) .

Ví dụ: Tìm hai số \(x;y\) biết \(\frac{x}{3} = \frac{y}{5}\) và \(x + y =  - 32\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} =  - 4\)

Do đó \(\frac{x}{3} =  - 4 \Rightarrow x = (-4).3 = - 12\)  và \(\frac{y}{5} =  - 4 \Rightarrow y = (-4).5 = - 20.\)

Vậy \(x =  - 12;y =  - 20.\)

Dạng 5: Chia một số thành các phần tỉ lệ với các số cho trước

Phương pháp:

Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau:

\(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\)

Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\).

Dạng 6: Tìm hai số biết tổng và tỉ số của chúng

Phương pháp:

Tìm hai số \(x;\,y\) biết $x.y = P$ và \(\dfrac{x}{y} = \dfrac{a}{b}\)

Cách 1: Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\)

Đặt \(\dfrac{x}{a} = \dfrac{y}{b} = k\) ta có \(x = ka;\,y = kb\)

Nên \(x.y = ka.kb = {k^2}ab = P \)\(\Rightarrow {k^2} = \dfrac{P}{{ab}}\)

Từ đó tìm được \(k\) sau đó tìm được \(x,y\).

Cách 2: Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{{{x^2}}}{{xy}} = \dfrac{a}{b}\) hay \(\dfrac{{{x^2}}}{P} = \dfrac{a}{b} \)\(\Rightarrow {x^2} = \dfrac{{Pa}}{b}\)  từ đó tìm được \(x\) và \(y.\)

Dạng 7: Chứng minh đẳng thức từ một tỉ lệ thức cho trước.

Phương pháp:

Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau.

Dạng 8: Bài toán về tỉ lệ thức

Phương pháp:

+ Xác định mối quan hệ giữa các yếu tố của đề bài

+ Lập được tỉ lệ thức

+ Áp dụng tính chất dãy tỉ số bằng nhau để giải bài toán.

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close