Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức

1. Elip a) Định nghĩa elip

Tổng hợp đề thi học kì 2 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

1. Elip

a) Định nghĩa elip

Cho hai điểm cố định và phân biệt F1, F2. Đặt F1F2=2c>0. Cho số thực a > c. Tập hợp các điểm M sao cho MF1+MF2=2a được gọi là đường elip (hay elip). Hai điểm F1, F2 được gọi là hai tiêu điểm và F1F2=2c được gọi là tiêu cự của elip đó.

b) Phương trình chính tắc của elip

Trong mặt phẳng tọa độ Oxy, elip có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm của đoạn nối hai tiêu điểm đó thì có phương trình chính tắc

x2a2+y2b2=1, với a > b  > 0.

Ngược lại, mỗi phương trình có dạng trên đều là phương trình của elip có hai tiêu điểm F1(a2b2;0), F2(a2b2;0), tiêu cự 2c=2a2b2 và tổng các khoảng cách từ mỗi điểm thuộc elip đó tới hai tiêu điểm bằng 2a.

2. Hypebol

a) Định nghĩa hypebol

Cho hai điểm cố định và phân biệt F1, F2. Đặt F1F2=2c>0. Cho số thực dương a < c. Tập hợp các điểm M sao cho |MF1MF2|=2a được gọi là đường hypebol (hay hypebol). Hai điểm F1, F2 được gọi là hai tiêu điểm và F1F2=2c được gọi là tiêu cự của hypebol đó.

b) Phương trình chính tắc của hypebol

Trong mặt phẳng tọa độ Oxy, hypebol có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm của đoạn nối hai tiêu điểm đó thì có phương trình chính tắc

x2a2y2b2=1, với a > 0, b  > 0.

Ngược lại, mỗi phương trình có dạng trên đều là phương trình của hypebol có hai tiêu điểm F1(a2+b2;0), F2(a2+b2;0), tiêu cự 2c=2a2+b2 và giá trị tuyệt đối của hiệu các khoảng cách từ mỗi điểm thuộc hypebol đến hai tiêu điểm bằng 2a.

3. Parabol

a) Định nghĩa parabol

Cho một điểm F cố định và một đường thẳng Δ cố định không đi qua F. Tập hợp các điểm M cách đều F và Δ được gọi là đường parabol (hay parabol). Điểm F được gọi là tiêu điểm, Δ được gọi là đường chuẩn, khoảng cách từ F đến Δ được gọi là tham số tiêu của parabol đó.

b) Phương trình chính tắc của parabol

Xét (P) là một parabol với tiêu điểm F, đường chuẩn Δ. Gọi H là hình chiếu vuông góc của F trên Δ. Khi đó, trong hệ trục tọa độ Oxy với gốc O là trung điểm của HF, tia Ox trùng tia OF, parabol (P) có phương trình chính tắc

y2=2px (với p > 0).

Ngược lại, mỗi phương trình trên là phương trình chính tắc của parabol có tiêu điểm F(p2;0) và đường chuẩn Δ:x=p2.

4. Một số ứng dụng của ba đường conic

a) Tính chất quang học

Tương tự gương cầu lồi thường đặt ở những khúc đường cua, người ta cũng có những gương (lồi, lõm) elip, hypebol, parabol. Tia sáng gặp các gương này, đều được phân xạ theo một quy tắc được xác định rõ bằng hình học.

- Tia nước bắn ra từ đài phun nước, đường đi bóng của quả bóng là những hình ảnh về đường parabol;

- Khi nghiêng cốc nước hình trụ, mặt nước trong cốc có hình elip. Tương tự, dưới ánh sáng mặt trời, bóng của một quả bóng, nhìn chung, là một elip;

- Ánh sáng phát ra từ một bóng đèn Led trên trần nhà có thể tạo nên trên tường các nhánh hyperbol;

- Nhiều công trình kiến trúc có hình elip, parabol hay hyperbol.

 

B. Bài tập

Bài 1: Trong các phương trình sau, phương trình nào là phương trình chính tắc của elip?

a) x232+y232=1

b) x242+y232=1

c) x232+y242=1

d) x242+y232=1

Giải:

Phương trình chính tắc của elip có dạng x2a2+y2b2=1, với a > b  > 0 nên chỉ có trường hợp d) là phương trình chính tắc của elip.

Bài 2: Trong các phương trình sau, phương trình nào là phương trình chính tắc của hypebol?

a) x252y242=1

b) x242y252=1

c) x252y252=1

d) x252y242=1

Giải:

Phương trình chính tắc của hypebol có dạng x2a2y2b2=1, với a > 0, b  > 0 nên các trường hợp b), c), d) là phương trình chính tắc của hypebol.

Bài 3: Trong các phương trình sau, phương trình nào là phương trình chính tắc của parabol?

a) y2=6x

b) y2=6x

c) y2=6y

d) y2=6y

Giải:

Phương trình chính tắc của parabol có dạng y2=2px, với p > 0 nên chỉ có trường hợp d) là phương trình chính tắc của parabol.

Bài 4: Cho elip có phương trình chính tắc x225+y216=1. Tìm các tiêu điểm và tiêu cự của elip. Tính tổng khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm.

Giải:

Ta có: a2=25, b2=16. Do đó c=a2b2=3. Vậy elip có hai tiêu điểm là F1(3;0), F2(3;0) và tiêu cự là F1F2=2c=6. Ta có a=25=5 nên tổng các khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm bằng 2a = 10.

Bài 5: Cho hypebol có phương trình chính tắc x29y216=1. Tìm các tiêu điểm và tiêu cự của hypebol. Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng bao nhiêu?

Giải:

Ta có: a2=9, b2=16. Do đó c=a2+b2=5. Vậy hypebol có hai tiêu điểm là F1(5;0), F2(5;0) và tiêu cự là 2c=10. Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng 2a=29=6.

Bài 6: Cho parabol (P): y2=x.

a) Tìm tiêu điểm F, đường chuẩn Δ của (P).

b) Tìm những điểm trên (P) có khoảng cách tới F bằng 3.

Giải:

a) Ta có 2p=1 nên p=12.

Parabol có tiêu điểm F(14;0) và đường chuẩn Δ:x=14.

b) Điểm M(x0;y0) thuộc (P) có khoảng cách tới F bằng 3 khi và chỉ khi y02=x0 và MF = 3. Do MF=d(M,Δ) nên d(M,Δ)=3.

Mặt khác Δ:x=14x0=y020 nên 3=d(M,Δ)=|x0+14|=x0+14.

Vậy x0=114y0=112 hoặc y0=112.

Vậy có hai điểm M thỏa mãn bài toán với tọa độ là (114;112)(114;112).

Bài 7: Lập phương trình chính tắc của elip (E) có một tiêu điểm là F2(5;0) và đi qua điểm M(0;3).

Giải:

Elip (E) có phương trình chính tắc là x2a2+y2b2=1 (a > b > 0).

Do F2(5;0) là một tiêu điểm của (E) nên c = 5.

Điểm M(0;3) nằm trên (E) nên 02a2+32b2=1. Do đó b2=9.

Suy ra a2=b2+c2=9+25=34.

Vậy elip (E) có phương trình chính tắc là x234+y29=1.

Bài 8: Lập phương trình chính tắc của hypebol (H) có một tiêu điểm là F2(6;0) và đi qua điểm A(4;0).

Giải:

Hypebol (H) có phương trình chính tắc là x2a2y2b2=1 (a > 0, b > 0).

Do F2(6;0) là một tiêu điểm của (H) nên c = 6.

Điểm A(4;0) nằm trên (H) nên 42a202b2=1. Do đó a2=16.

Suy ra b2=c2a2=6216=20.

Vậy hypebol (H) có phương trình chính tắc là x216y220=1.

Bài 9: Lập phương trình chính tắc của parabol (P), biết:

a) (P) có tiêu điểm là F(5;0).

b) (P) đi qua điểm M(2;1).

Giải:

Parabol (P) có phương trình chính tắc là y2=2px (p > 0).

a) Do F(5;0) là tiêu điểm của (P) nên p2=5, tức là p = 10.

Vậy parabol (P) có phương trình chính tắc là y2=20x.

b) M(2;1) nằm trên (P) nên 12=2p.2, tức p=14.

Vậy parabol (P) có phương trình chính tắc là y2=x2.

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.

close