Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều

A. Lý thuyết 1. Elip a) Định nghĩa elip

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

A. Lý thuyết

1. Elip

a) Định nghĩa elip

Cho hai điểm \({F_1}\), \({F_2}\) cố định có khoảng cách \({F_1}{F_2} = 2c > 0\). Cho số thực a > c. Tập hợp các điểm M sao cho \(M{F_1} + M{F_2} = 2a\) được gọi là đường elip (hay elip). Hai điểm \({F_1}\), \({F_2}\) được gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) được gọi là tiêu cự của elip đó.

b) Phương trình chính tắc của elip

Trong mặt phẳng tọa độ Oxy, elip có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm của đoạn nối hai tiêu điểm đó thì có phương trình chính tắc

\(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), với a > b  > 0.

Ngược lại, mỗi phương trình có dạng trên đều là phương trình của elip có hai tiêu điểm \({F_1}( - \sqrt {{a^2} - {b^2}} ;0)\), \({F_2}(\sqrt {{a^2} - {b^2}} ;0)\), tiêu cự \(2c = 2\sqrt {{a^2} - {b^2}} \) và tổng các khoảng cách từ mỗi điểm thuộc elip đó tới hai tiêu điểm bằng 2a.

2. Hypebol

a) Định nghĩa hypebol

Cho hai điểm \({F_1}\), \({F_2}\) cố định có khoảng cách \({F_1}{F_2} = 2c > 0\). Cho số thực dương a < c. Tập hợp các điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) được gọi là đường hypebol (hay hypebol). Hai điểm \({F_1}\), \({F_2}\) được gọi là hai tiêu điểm và \({F_1}{F_2} = 2c\) được gọi là tiêu cự của hypebol đó.

b) Phương trình chính tắc của hypebol

Trong mặt phẳng tọa độ Oxy, hypebol có hai tiêu điểm thuộc trục hoành sao cho O là trung điểm của đoạn nối hai tiêu điểm đó thì có phương trình chính tắc

\(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a > 0, b  > 0.

Ngược lại, mỗi phương trình có dạng trên đều là phương trình của hypebol có hai tiêu điểm \({F_1}( - \sqrt {{a^2} + {b^2}} ;0)\), \({F_2}(\sqrt {{a^2} + {b^2}} ;0)\), tiêu cự \(2c = 2\sqrt {{a^2} + {b^2}} \) và giá trị tuyệt đối của hiệu các khoảng cách từ mỗi điểm thuộc hypebol đến hai tiêu điểm bằng 2a.

3. Parabol

a) Định nghĩa parabol

Cho một điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Tập hợp các điểm M cách đều F và \(\Delta \) được gọi là đường parabol (hay parabol). Điểm F được gọi là tiêu điểm, \(\Delta \) được gọi là đường chuẩn, khoảng cách từ F đến \(\Delta \) được gọi là tham số tiêu của parabol đó.

b) Phương trình chính tắc của parabol

Xét (P) là một parabol với tiêu điểm F, đường chuẩn \(\Delta \). Gọi H là hình chiếu vuông góc của F trên \(\Delta \). Khi đó, trong hệ trục tọa độ Oxy với gốc O là trung điểm của HF, tia Ox trùng tia OF, parabol (P) có phương trình chính tắc

\({y^2} = 2px\) (với p > 0).

Ngược lại, mỗi phương trình trên là phương trình chính tắc của parabol có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\) và đường chuẩn \(x + \frac{p}{2} = 0\).

4. Một số ứng dụng thực tiễn của ba đường conic

Ba đường conic có nhiều ứng dụng trong thực tiễn. Ta nêu ra một vài ứng dụng của ba đường conic.

- Năm 1911, nhà vật lý học người Anh là Ernest Rutherford (1871 – 1937) đã đề xuất mô hình hành tinh nguyên tử, trong đó hạt nhân nhỏ bé nằm tại tâm của nguyên tử, còn các electron bay quanh hạt nhân trên các quỹ đạo hình elip như các hành tinh bay quanh Mặt Trời.

 

- Trong vật lý, hiện tượng hai sóng gặp nhau tạo nên các gọn sóng ổn định gọi là hiện tượng giao thoa của hai sóng. Các gọn sóng có hình các đường hyperbol gọi là các vân giao thoa.

- Với gương parabol, tia sáng phát ra từ tiêu điểm (tia tối) chiếu đến một điểm của parabol sẽ bị hất lại (tia phản xạ) theo một tia song song (hoặc trùng) với trục của parabol.

Tính chất trên có nhiều ứng dụng, chẳng hạn:

- Đèn pha: Bề mặt của đèn pha là một mặt tròn xoay sinh bởi một cung parabol quay quanh trục của nó, bóng đèn được đặt ở vị trí tiêu điểm của parabol đó. Các tia sáng phát ra từ bóng đèn khi chiếu đến bề mặt của đèn pha sẽ bị hất lại theo các tia sáng song song, cho phép chúng ta quan sát được các vật ở xa.

- Chảo vệ tinh cũng có dạng như đèn pha. Điểm thu và phát tín hiệu của máy được đặt ở vị trí tiêu điểm của parabol.

 

B. Bài tập

Bài 1: Trong các phương trình sau, phương trình nào là phương trình chính tắc của elip?

a) \(\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1\)

b) \(\frac{{{x^2}}}{{{4^2}}} + \frac{{{y^2}}}{{{3^2}}} =  - 1\)

c) \(\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{4^2}}} = 1\)

d) \(\frac{{{x^2}}}{{{4^2}}} + \frac{{{y^2}}}{{{3^2}}} = 1\)

Giải:

Phương trình chính tắc của elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), với a > b  > 0 nên chỉ có trường hợp d) là phương trình chính tắc của elip.

Bài 2: Trong các phương trình sau, phương trình nào là phương trình chính tắc của hypebol?

a) \(\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{4^2}}} =  - 1\)

b) \(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{5^2}}} = 1\)

c) \(\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{5^2}}} = 1\)

d) \(\frac{{{x^2}}}{{{5^2}}} - \frac{{{y^2}}}{{{4^2}}} = 1\)

Giải:

Phương trình chính tắc của hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), với a > 0, b  > 0 nên các trường hợp b), c), d) là phương trình chính tắc của hypebol.

Bài 3: Trong các phương trình sau, phương trình nào là phương trình chính tắc của parabol?

a) \({y^2} =  - 6x\)

b) \({y^2} = 6x\)

c) \({y^2} =  - 6y\)

d) \({y^2} = 6y\)

Giải:

Phương trình chính tắc của parabol có dạng \({y^2} = 2px\), với p > 0 nên chỉ có trường hợp d) là phương trình chính tắc của parabol.

Bài 4: Cho elip có phương trình chính tắc \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\). Tìm các tiêu điểm và tiêu cự của elip. Tính tổng khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm.

Giải:

Ta có: \({a^2} = 25\), \({b^2} = 16\). Do đó \(c = \sqrt {{a^2} - {b^2}}  = 3\). Vậy elip có hai tiêu điểm là \({F_1}( - 3;0)\), \({F_2}(3;0)\) và tiêu cự là \({F_1}{F_2} = 2c = 6\). Ta có \(a = \sqrt {25}  = 5\) nên tổng các khoảng cách từ mỗi điểm trên elip tới hai tiêu điểm bằng 2a = 10.

Bài 5: Cho hypebol có phương trình chính tắc \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\). Tìm các tiêu điểm và tiêu cự của hypebol. Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng bao nhiêu?

Giải:

Ta có: \({a^2} = 9\), \({b^2} = 16\). Do đó \(c = \sqrt {{a^2} + {b^2}}  = 5\). Vậy hypebol có hai tiêu điểm là \({F_1}( - 5;0)\), \({F_2}(5;0)\) và tiêu cự là \(2c = 10\). Hiệu các khoảng cách từ một điểm nằm trên hypebol tới hai tiêu điểm có giá trị tuyệt đối bằng \(2a = 2\sqrt 9  = 6\).

Bài 6: Cho parabol (P): \({y^2} = x\).

a) Tìm tiêu điểm F, đường chuẩn \(\Delta \) của (P).

b) Tìm những điểm trên (P) có khoảng cách tới F bằng 3.

Giải:

a) Ta có \(2p = 1\) nên \(p = \frac{1}{2}\).

Parabol có tiêu điểm \(F\left( {\frac{1}{4};0} \right)\) và đường chuẩn \(\Delta :x =  - \frac{1}{4}\).

b) Điểm \(M({x_0};{y_0})\) thuộc (P) có khoảng cách tới F bằng 3 khi và chỉ khi \({y_0}^2 = {x_0}\) và MF = 3. Do \(MF = d(M,\Delta )\) nên \(d(M,\Delta ) = 3\).

Mặt khác \(\Delta :x =  - \frac{1}{4}\) và \({x_0} = {y_0}^2 \ge 0\) nên \(3 = d(M,\Delta ) = \left| {{x_0} + \frac{1}{4}} \right| = {x_0} + \frac{1}{4}\).

Vậy \({x_0} = \frac{{11}}{4}\) và \({y_0} = \frac{{\sqrt {11} }}{2}\) hoặc \({y_0} =  - \frac{{\sqrt {11} }}{2}\).

Vậy có hai điểm M thỏa mãn bài toán với tọa độ là \(\left( {\frac{{11}}{4};\frac{{\sqrt {11} }}{2}} \right)\) và \(\left( {\frac{{11}}{4}; - \frac{{\sqrt {11} }}{2}} \right)\).

Bài 7: Lập phương trình chính tắc của elip (E) có một tiêu điểm là \({F_2}(5;0)\) và đi qua điểm M(0;3).

Giải:

Elip (E) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (a > b > 0).

Do \({F_2}(5;0)\) là một tiêu điểm của (E) nên c = 5.

Điểm M(0;3) nằm trên (E) nên \(\frac{{{0^2}}}{{{a^2}}} + \frac{{{3^2}}}{{{b^2}}} = 1\). Do đó \({b^2} = 9\).

Suy ra \({a^2} = {b^2} + {c^2} = 9 + 25 = 34\).

Vậy elip (E) có phương trình chính tắc là \(\frac{{{x^2}}}{{34}} + \frac{{{y^2}}}{9} = 1\).

Bài 8: Lập phương trình chính tắc của hypebol (H) có một tiêu điểm là \({F_2}(6;0)\) và đi qua điểm A(4;0).

Giải:

Hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (a > 0, b > 0).

Do \({F_2}(6;0)\) là một tiêu điểm của (H) nên c = 6.

Điểm A(4;0) nằm trên (H) nên \(\frac{{{4^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\). Do đó \({a^2} = 16\).

Suy ra \({b^2} = {c^2} - {a^2} = {6^2} - 16 = 20\).

Vậy hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{20}} = 1\).

Bài 9: Lập phương trình chính tắc của parabol (P), biết:

a) (P) có tiêu điểm là F(5;0).

b) (P) đi qua điểm M(2;1).

Giải:

Parabol (P) có phương trình chính tắc là \({y^2} = 2px\) (p > 0).

a) Do F(5;0) là tiêu điểm của (P) nên \(\frac{p}{2} = 5\), tức là p = 10.

Vậy parabol (P) có phương trình chính tắc là \({y^2} = 20x\).

b) M(2;1) nằm trên (P) nên \({1^2} = 2p.2\), tức \(p = \frac{1}{4}\).

Vậy parabol (P) có phương trình chính tắc là \({y^2} = \frac{x}{2}\).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close