Giải mục II trang 60, 61 SGK Toán 7 tập 1 - Cánh diềuCho biết x, y là hai đại lượng tỉ lệ thuận với nhau: Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên...
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 2 Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:
a) Hãy xác định hệ số tỉ lệ của y đối với x b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\) c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\) Phương pháp giải: + Nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x (k là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ k
+ Tính các tỉ số rồi so sánh a) Hãy xác định hệ số tỉ lệ của y đối với x b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\) c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
Lời giải chi tiết: a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3 b) Ta có: \(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\) c) Ta có: \(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)
|