Giải mục 3 trang 22 SGK Toán 11 tập 1 - Chân trời sáng tạoTừ công thức cộng, hãy tính tổng và hiệu của: Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 3 Từ công thức cộng, hãy tính tổng và hiệu của: a) \(\cos \left( {\alpha - b} \right)\) và \(\cos \left( {\alpha + \beta } \right)\); b) \(\sin \left( {\alpha - \beta } \right)\)và \(\sin \left( {\alpha + \beta } \right)\). Phương pháp giải: \(\begin{array}{l}\cos \left( {\alpha - b} \right) = \cos \alpha \cos \beta + \sin \alpha sin\beta \\\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha sin\beta \end{array}\) \(\begin{array}{l}\sin \left( {\alpha - \beta } \right) = \sin \alpha \cos \beta - \cos \alpha sin\beta \\\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha sin\beta \end{array}\) Lời giải chi tiết: a, \(\begin{array}{l}\cos \left( {\alpha - b} \right) + \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta + \cos \alpha \cos \beta - \sin \alpha sin\beta \\ = 2\cos \alpha \cos \beta \end{array}\) \(\begin{array}{l}\cos \left( {\alpha - b} \right) - \cos \left( {\alpha + \beta } \right)\\ = \cos \alpha \cos \beta + \sin \alpha sin\beta - \cos \alpha \cos \beta + \sin \alpha sin\beta \\ = 2\sin \alpha sin\beta \end{array}\) b, \(\begin{array}{l}\sin \left( {\alpha - \beta } \right) - \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta - \sin \alpha \cos \beta - \cos \alpha sin\beta \\ = - 2\cos \alpha sin\beta \end{array}\) \(\begin{array}{l}\sin \left( {\alpha - \beta } \right) + \sin \left( {\alpha + \beta } \right)\\ = \sin \alpha \cos \beta - \cos \alpha sin\beta + \sin \alpha \cos \beta + \cos \alpha sin\beta \\ = 2\sin \alpha \cos \beta \end{array}\) Thực hành 3 Tính giá trị của các biểu thức\(\sin \frac{\pi }{{24}}\cos \frac{{5\pi }}{{24}}\) và \(\sin \frac{{7\pi }}{8}\sin \frac{{5\pi }}{8}\) Phương pháp giải: Áp dụng công thức \(\begin{array}{l}\cos a\cos b = \frac{1}{2}\left[ {\cos \left( {a + b} \right) + \cos \left( {a - b} \right)} \right]\\\sin a\sin b = \frac{1}{2}\left[ {\cos \left( {a - b} \right) - \cos \left( {a + b} \right)} \right]\\\sin a\cos b = \frac{1}{2}\left[ {\sin \left( {a + b} \right) + \sin \left( {a - b} \right)} \right]\end{array}\) Lời giải chi tiết: Ta có: \(\begin{array}{l}\sin \frac{\pi }{{24}}\cos \frac{{5\pi }}{{24}} = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{{24}} + \frac{{5\pi }}{{24}}} \right) + \sin \left( {\frac{\pi }{{24}} - \frac{{5\pi }}{{24}}} \right)} \right]\\ = \frac{1}{2}\left[ {\sin \left( {\frac{\pi }{4}} \right) + \sin \left( { - \frac{\pi }{6}} \right)} \right]\\ = \frac{1}{2}\left[ {\frac{{\sqrt 2 }}{2} - \frac{1}{2}} \right] = \frac{{\sqrt 2 - 1}}{4}\end{array}\) Ta có: \(\begin{array}{l}\sin \frac{{7\pi }}{8}\sin \frac{{5\pi }}{8} = \frac{1}{2}\left[ {\cos \left( {\frac{{7\pi }}{8} - \frac{{5\pi }}{8}} \right) - \cos \left( {\frac{{7\pi }}{8} + \frac{{5\pi }}{8}} \right)} \right]\\ = \frac{1}{2}\left[ {\cos \left( {\frac{\pi }{4}} \right) - \cos \left( {\frac{{3\pi }}{2}} \right)} \right]\\ = \frac{1}{2}.\left( {\frac{{\sqrt 2 }}{2} + 0} \right) = \frac{{\sqrt 2 }}{4}\end{array}\)
|