Giải mục 2 trang 119, 120, 121 SGK Toán 9 tập 1 - Cánh diềuVẽ đường tròn (left( {O;2cm} right)) và các điểm (A,B) thỏa mãn (OA < 2cm,OB = 2cm). Nêu nhận xét về vị trí của các điểm (A,B) so với đường tròn (left( {O;2cm} right)). Tổng hợp đề thi học kì 2 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Lựa chọn câu để xem lời giải nhanh hơn
HĐ3 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 3 trang 119 SGK Toán 9 Cánh diều Vẽ đường tròn (O;2cm)(O;2cm) và các điểm A,BA,B thỏa mãn OA<2cm,OB=2cmOA<2cm,OB=2cm. Nêu nhận xét về vị trí của các điểm A,BA,B so với đường tròn (O;2cm)(O;2cm). Phương pháp giải: Dựa vào hình ảnh trực quan và các kiến thức đã học để trả lời bài toán. Lời giải chi tiết: + Điểm AA nằm trong đường tròn (O;2cm)(O;2cm). + Điểm BB nằm trên đường tròn (O;2cm)(O;2cm). HĐ4 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 4 trang 120 SGK Toán 9 Cánh diều Quan sát Hình 71, hãy cho biết phần hình tròn (O)(O) tô màu xanh được giới hạn bởi hai bán kính và cung nào? Phương pháp giải: Dựa vào hình ảnh trực quan để nhận xét. Lời giải chi tiết: Phần hình tròn (O)(O) tô màu xanh được giới hạn bởi hai bán kính và cung ⌢AmB⌢AmB. LT3 Video hướng dẫn giải Trả lời câu hỏi Luyện tập 3 trang 120 SGK Toán 9 Cánh diều Cho hình quạt tròn CODCOD giới hạn bởi hai bán kính OC,ODOC,OD và cung CnDCnD sao cho OC=ODOC=OD (Hình 74). Hãy tìm số đo cung CqDCqD ứng với hình quạt đó. Phương pháp giải: Chứng minh ΔCODΔCOD đều nên ^COD=600ˆCOD=600. Dựa vào tính chất góc ở tâm để tính số đo cung CqD. Lời giải chi tiết: Do OC = OD nên tam giác COD là tam giác đều, suy ra ^COD=600ˆCOD=600. Vì góc COD là góc ở tâm chắn cung nhỏ CD nên sđ⌢CD=60o⌢CD=60o. Suy ra sđ⌢CqD=360o−sđ⌢CD=360o−60o=300o. HĐ5 Video hướng dẫn giải Trả lời câu hỏi Hoạt động 5 trang 120 SGK Toán 9 Cánh diều Ta coi mỗi hình tròn bán kính R là một hình quạt có số đo 360∘. Tính diện tích hình quạt tròn tâm O, bán kính R, biết số đo cung ứng với hình quạt tròn đó là: a) 1∘ b) n∘ (Hình 75). Phương pháp giải: Dựa vào kiến thức vừa học để tính. Lời giải chi tiết: a) Diện tích hình tròn là: S=πR2. Diện tích hình quạt tròn tâm O, bán kính R, có số đo cung là 1∘ là: S=πR2360. b) Diện tích hình quạt tròn tâm O, bán kính R, có số đo cung là n∘ là: S=πR2n360. LT4 Video hướng dẫn giải Trả lời câu hỏi Luyện tập 4 trang 121 SGK Toán 9 Cánh diều Hình quạt tô màu đỏ ở Hình 65 có bán kính bằng 2 dm và góc ở tâm bằng 150∘. a) Tính diện tích của hình quạt đó theo đơn vị decimét vuông (làm tròn kết quả đến hàng phần trăm). b) Tính chiều dài cung tương ứng với hình quạt tròn đó. Phương pháp giải: Dựa vào công thức: + S=πR2n360 để tính diện tích của hình quạt. + l=πRn180 để tính chiều dài cung tương ứng. Lời giải chi tiết: a) Diện tích của hình quạt đó là: S=π.22.150360≈5,24(dm2). b) Chiều dài cung tương ứng với hình quạt tròn đó là: l=πRn180=π.2.150180=5π3(dm).
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com >> Chi tiết khoá học xem: TẠI ĐÂY Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
|