Giải mục 1 trang 50, 51 SGK Toán 11 tập 1 - Cùng khám pháa) Một nhà vua Ấn Độ quyết định ban thưởng cho người phát minh ra cờ vua theo nguyện vọng của người đó. Ông ta xin nhà vua một số thóc để mang tặng người nghèo, số thóc được đặt trên bàn cờ vua có 64 ô đã được đánh số từ 1 đến 64 như sau:
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 1 a) Một nhà vua Ấn Độ quyết định ban thưởng cho người phát minh ra cờ vua theo nguyện vọng của người đó. Ông ta xin nhà vua một số thóc để mang tặng người nghèo, số thóc được đặt trên bàn cờ vua có 64 ô đã được đánh số từ 1 đến 64 như sau: đặt vào ô số một một hạt, ô số hai hai hạt, ô số ba bốn hạt,... Cứ như vậy, số hạt thóc ở ô sau gấp đôi ô liền trước cho đến ô cuối cùng. Nếu gọi \({u_n}\) là số hạt thóc được đặt vào ô số \(n\), hãy tìm các giá trị của \({u_n}\) tương ứng với \(n\) đã cho trong bảng sau: b) Với mỗi số nguyên dương \(n\), ta gọi \({v_n}\) là số nghịch đảo của \(n\). Hãy tìm các giá trị của \({v_n}\) tương ứng với \(n\) đã cho trong bảng sau: Phương pháp giải: a) Đọc để để tìm \({u_n}\) b) Số nghịch đảo \({v_n} = \frac{1}{n}\) Lời giải chi tiết: a) Ta có: \(\begin{array}{l}{u_1} = 1 = {2^0} ;\\{u_2} =2 = {2^1}= {2^{2 - 1}} ;\\{u_3} = 4= {2^2}= {2^{3 - 1}} ;\\{u_4}= 8 = {2^3} = {2^{4 - 1}} ;\\{u_5} = 16= {2^4}= {2^{5 - 1}} ;\\{u_6}= 32= {2^5} = {2^{6 - 1}} ;\\...\\{u_{64}} = {2^{63}}= {2^{64 - 1}} \end{array}\) Vậy \({u_n} = {2^{n - 1}}\). b) \({v_n}\) là số nghịch đảo của \(n\), ta có: \({v_n} = \frac{1}{n}\) \({v_1} = \frac{1}{1} = 1;{v_2} = \frac{1}{2};{v_3} = \frac{1}{3};{v_4} = \frac{1}{4};...;{v_{100}} = \frac{1}{{100}};...;{v_n} = \frac{1}{n}\) Luyện tập 1 Cho \(\left( {{p_n}} \right)\) là dãy số, trong đó \({p_n}\) là số nguyên tố thứ \(n\). Xác định \({p_2}\), \({p_5}\), \({p_9}\). Phương pháp giải: - Số nguyên tố là các số tự nhiên lớn hơn 1, chỉ chia hết cho 1 và chính nó. - Liệt kê các số nguyên tố từ nhỏ đến lớn. Lời giải chi tiết: Dạng khai triển của dãy \(\left( {{p_n}} \right)\) là 2, 3, 5, 7, 11, 13, 17, 19, 23 ... trong đó \({p_2} = 3\), \({p_5} = 11\), \({p_9} = 23\).
|