B. Hoạt động thực hành - Bài 24 : So sánh hai số thập phân

Giải Bài 24 : So sánh hai số thập phân phần hoạt động thực hành trang 66, 67 sách VNEN toán lớp 5 với lời giải dễ hiểu

Lựa chọn câu để xem lời giải nhanh hơn

Câu 1

So sánh hai số thập phân :

a) 7,9 và 8,2                                              b) 6,35 và 6,53

c) 2,8 và 2,93                                            d) 0,458 và 0,54.

Phương pháp giải:

- So sánh các phần nguyên của hai số thập phân đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên của hai số thập phân đó bằng nhau thì ta so sánh phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn ... đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau.

Lời giải chi tiết:

a) 7,9 < 8,2 (vì 7 < 8).

b) 6,35 < 6,53 (vì phần nguyên bằng nhau, ở hàng phần mười có 3 < 5).

c) 2,8 < 2,93 (vì phần nguyên bằng nhau, ở hàng phần mười có 8 < 9).

d) 0,458 và 0,54 (vì phần nguyên bằng nhau, ở hàng phần mười có 4 < 5).

Câu 2

Viết các số thập phân sau theo thứ tự từ bé đến lớn

a) 0,8 ;     0,17 ;     0,315                   

b) 7,8 ;     8,7 ;       8,2 ;      7,96 ;     8,014.

Phương pháp giải:

- So sánh các số theo quy tắc :

 + So sánh các phần nguyên của hai số đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn.

+ Nếu phần nguyên của hai số đó bằng nhau,thì ta so sánh phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn ... đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn.

+ Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau.

- Sau đó sắp xếp các số theo thứ tự từ bé đến lớn.

Lời giải chi tiết:

a) So sánh các số thập phân đã cho ta có:

0,17  <  0,315  <  0,8

Vậy các số được viết theo thứ tự từ bé đến lớn là :

0,17  ;  0,315  ;   0,8.

b) So sánh các số thập phân đã cho ta có:

7,8  <  7,96  <   8,014  <   8,2  <  8,7.

Vậy các số được viết theo thứ tự từ bé đến lớn là :

7,8 ;  7,96  ;   8,014  ;   8,2 ;   8,7.

Câu 3

Viết các số thập phân sau theo thứ tự từ lớn đến bé :

a) 1,004 ;    0,04 ;    0,104

b) 0,8 ;    0,807 ;    0,87 ;    0,78 ;    0,087.

Phương pháp giải:

- So sánh các số theo quy tắc :

 + So sánh các phần nguyên của hai số đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn.

+ Nếu phần nguyên của hai số đó bằng nhau,thì ta so sánh phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn ... đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn.

+ Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau.

- Sau đó sắp xếp các số theo thứ tự từ lớn đến bé.

Lời giải chi tiết:

a) So sánh các số thập phân đã cho ta có:

1,004  >  0,104  >  0,04

Vậy các số được viết theo thứ tự từ lớn đến bé là :

1,004  ;  0,104  ;  0,04.

a) So sánh các số thập phân đã cho ta có:

0,87  >  0,807  >  0,8  >  0,78  >  0,087.

Vậy các số được viết theo thứ tự từ lớn đến bé là :

0,87  ;  0,807  ;  0,8  ;  0,78   ;  0,087.

Câu 4

Tìm chữ số \(x\) biết :  \(5,6x4 < 5,614\).

Phương pháp giải:

Áp dụng cách so sánh hai số thập phân :

- So sánh các phần nguyên của hai số thập phân đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên của hai số thập phân đó bằng nhau thì ta so sánh phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn ... đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau.

Lời giải chi tiết:

Ta có \(5,6x4 < 5,614\) nên suy ra \(x<1\), hay \(x = 0\).

Thử lại : \(5,604 < 5,614\).

Vậy \(x=0\).

Câu 5

Tìm số tự nhiên \(x\), biết :

a) \(0,9 < x < 1,2\)                                   b) \(84,97 < x < 85,14\)

Phương pháp giải:

Áp dụng cách so sánh hai số thập phân :

- So sánh các phần nguyên của hai số thập phân đó như so sánh hai số tự nhiên, số thập phân nào có phần nguyên lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên của hai số thập phân đó bằng nhau thì ta so sánh phần thập phân, lần lượt từ hàng phần mười, hàng phần trăm, hàng phần nghìn ... đến cùng một hàng nào đó, số thập phân nào có chữ số ở hàng tương ứng lớn hơn thì số đó lớn hơn.

- Nếu phần nguyên và phần thập phân của hai số đó bằng nhau thì hai số đó bằng nhau.

Lời giải chi tiết:

a) Số tự nhiên \(x\) thỏa mãn điều kiện \(0,9 < x < 1,2\) là \(x = 1\).

b) Số tự nhiên \(x\) thỏa mãn điều kiện \(84,97 < x < 85,14\) là \(x = 85\). 

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K14 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close