Giải bài 8 trang 68 sách bài tập toán 11 - Cánh diều

Tính các giới hạn sau:

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Tính các giới hạn sau:

a) \(\lim \frac{{4n + 2}}{3}\)                                                                       

b) \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\)

c) \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}}\)                                                                             

d) \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right)\)

Phương pháp giải - Xem chi tiết

Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.

Lời giải chi tiết

a) Ta có \(\lim \left( {4n + 2} \right) =  + \infty \), \(\lim 3 = 3\) nên \(\lim \frac{{4n + 2}}{3} =  + \infty \)

b) Ta có \(\lim \frac{2}{n} = 0 \Rightarrow \lim \left( { - 5 + \frac{2}{n}} \right) =  - 5\)

Mặt khác, \(\lim \left( {3n + 4} \right) =  + \infty \). Suy ra \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} =  - \infty \)

c) Ta có \(\lim \frac{1}{{n + 1}} = 0 \Rightarrow \lim \left( { - 3 + \frac{1}{{n + 1}}} \right) =  - 3\)

Mặt khác, \(\lim {5^n} =  + \infty \), suy ra \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}} = 0\)

d) Ta có \(\lim {4^n} =  + \infty  \Rightarrow \lim \frac{5}{{{4^n}}} = 0\).

Như vậy \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right) = \lim 6 - \lim \frac{5}{{{4^n}}} = 6 - 0 = 6\).

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close