Bài 72 trang 17 SBT toán 9 tập 1Giải bài 72 trang 17 sách bài tập toán 9. Xác định giá trị biểu thức sau theo cách thích hợp... Đề bài Xác định giá trị biểu thức sau theo cách thích hợp: \( \displaystyle{1 \over {\sqrt 2 + \sqrt 1 }} + {1 \over {\sqrt 3 + \sqrt 2 }} + {1 \over {\sqrt 4 + \sqrt 3 }}\) Phương pháp giải - Xem chi tiết Áp dụng: \(\dfrac{A}{{\sqrt B \pm \sqrt C }} = \dfrac{{A(\sqrt B \mp \sqrt C)}}{{B - C}}\) với \(B, C\ge 0; B\ne C\). Lời giải chi tiết Ta có: \( \displaystyle{1 \over {\sqrt 2 + \sqrt 1 }} + {1 \over {\sqrt 3 + \sqrt 2 }} + {1 \over {\sqrt 4 + \sqrt 3 }}\) \( \displaystyle = {{\sqrt 2 - \sqrt 1 } \over {(\sqrt 2 + \sqrt 1 )(\sqrt 2 - \sqrt 1 )}} \)\(\displaystyle + {{\sqrt 3 - \sqrt 2 } \over {(\sqrt 3 + \sqrt {2)} (\sqrt 3 - \sqrt 2 )}} \)\(\displaystyle + {{\sqrt 4 - \sqrt 3 } \over {(\sqrt 4 + \sqrt 3 )(\sqrt 4 - \sqrt 3 )}}\) \( \displaystyle = {{\sqrt 2 - \sqrt 1 } \over {2 - 1}} \)\(\displaystyle + {{\sqrt 3 - \sqrt 2 } \over {3 - 2}} \)\(\displaystyle + {{\sqrt 4 - \sqrt 3 } \over {4 - 3}}\) \( \displaystyle = \sqrt 2 - \sqrt 1 + \sqrt 3 - \sqrt 2 \)\( + \sqrt 4 - \sqrt 3 \) \( \displaystyle = - \sqrt 1 + \sqrt 4 \)\( = - 1 + 2 = 1\) HocTot.Nam.Name.Vn
>> Học trực tuyến Lớp 9 & Lộ trình UP10 trên Tuyensinh247.com >> Chi tiết khoá học xem: TẠI ĐÂY Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
|