Giải bài 70 trang 70 sách bài tập toán 12 - Cánh diềuXác định vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x + 2}}{9} = \frac{{y - 1}}{{27}} = \frac{{z - 3}}{{ - 27}}\) và \({\Delta _2}:\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 7}}{3}\); b) \({\Delta _1}:\frac{{x + 1}}{{ - 2}} = \frac{{y - 6}}{5} = \frac{{z + 3}}{{ - 4}}\) và \({\Delta _2}:\frac{{x + 13}}{7} = \frac{{y + 9}}{5} = \frac{{z + 15}}{8}\); c) \({\Delta _1}:\frac{{x + 3}}{2} = \frac{{y + 6 Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Xác định vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) trong mỗi trường hợp sau: a) \({\Delta _1}:\frac{{x + 2}}{9} = \frac{{y - 1}}{{27}} = \frac{{z - 3}}{{ - 27}}\) và \({\Delta _2}:\frac{{x + 1}}{{ - 1}} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 7}}{3}\); b) \({\Delta _1}:\frac{{x + 1}}{{ - 2}} = \frac{{y - 6}}{5} = \frac{{z + 3}}{{ - 4}}\) và \({\Delta _2}:\frac{{x + 13}}{7} = \frac{{y + 9}}{5} = \frac{{z + 15}}{8}\); c) \({\Delta _1}:\frac{{x + 3}}{2} = \frac{{y + 6}}{3} = \frac{{z + 3}}{2}\) và \({\Delta _2}:\frac{{x + 17}}{2} = \frac{{y - 33}}{{ - 3}} = \frac{{z + 16}}{2}\). Phương pháp giải - Xem chi tiết ‒ Xét vị trí tương đối của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) với: \({\Delta _1}\) đi qua điểm \({M_1}\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) và \({\Delta _2}\) đi qua điểm \({M_2}\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \): • \({\Delta _1}\parallel {\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] \ne \overrightarrow 0 \end{array} \right.\). • \({\Delta _1}\) cắt \({\Delta _2}\) nếu \(\left\{ \begin{array}{l}\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] \ne \overrightarrow 0 \\\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 0\end{array} \right.\). • \({\Delta _1}\) và \({\Delta _2}\) chéo nhau nếu \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} \ne 0\). Lời giải chi tiết a) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 2;1;3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {9;27; - 27} \right)\). Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 1;3;7} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1; - 3;3} \right)\). Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {0;0;0} \right) = \overrightarrow 0 ,\overrightarrow {{M_1}{M_2}} = \left( {1;2;4} \right)\). \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} } \right] = \left( {162; - 63; - 9} \right) \ne \overrightarrow 0 \). Vậy \({\Delta _1}\parallel {\Delta _2}\). b) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 1;6; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( { - 2;5; - 4} \right)\). Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 13; - 9; - 15} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {7;5;8} \right)\). Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {60; - 12; - 45} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 12; - 15; - 12} \right)\). \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 60.\left( { - 12} \right) - 12.\left( { - 15} \right) - 45.\left( { - 12} \right) = 0\). Vậy \({\Delta _1}\) cắt \({\Delta _2}\). c) Đường thẳng \({\Delta _1}\) đi qua điểm \({M_1}\left( { - 3; - 6; - 3} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2;3;2} \right)\). Đường thẳng \({\Delta _2}\) đi qua điểm \({M_2}\left( { - 17;33; - 16} \right)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {2; - 3;2} \right)\). Ta có: \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {12;0; - 12} \right),\overrightarrow {{M_1}{M_2}} = \left( { - 14;39; - 13} \right)\). \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} = 12.\left( { - 14} \right) + 0.39 - 12.\left( { - 13} \right) = - 12 \ne 0\). Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.
|