Giải bài 59 trang 25 sách bài tập toán 12 - Cánh diềuSố đường tiệm cận của đồ thị hàm số (y = frac{{2{rm{x}}}}{{{x^2} - 4}}) là: A. 1. B. 2. C. 3. D. 0. Đề bài Số đường tiệm cận của đồ thị hàm số \(y = \frac{{2{\rm{x}}}}{{{x^2} - 4}}\) là: A. 1. B. 2. C. 3. D. 0. Phương pháp giải - Xem chi tiết ‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn: \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \) thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng. ‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang. Lời giải chi tiết Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { \pm 2} \right\}\). Ta có: • \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{2{\rm{x}}}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{2{\rm{x}}}}{{{x^2} - 4}} = + \infty \) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{2{\rm{x}}}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{2{\rm{x}}}}{{{x^2} - 4}} = + \infty \) Vậy \(x = - 2\) và \({\rm{x}} = 2\) là các tiệm cận đứng của đồ thị hàm số đã cho. • \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{\rm{x}}}}{{{x^2} - 4}} = 0;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2{\rm{x}}}}{{{x^2} - 4}} = 0\) Vậy \(y = 0\) là tiệm cận ngang của đồ thị hàm số đã cho. Vậy hàm số có 3 đường tiệm cận. Chọn C.
|