Bài 59 trang 165 SBT toán 9 tập 1

Giải bài 59 trang 165 sách bài tập toán 9. Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp, r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng:...

Đề bài

Cho tam giác \(ABC\) vuông tại \(A.\) Gọi \(R\) là bán kính của đường tròn ngoại tiếp, \(r\) là bán kính của đường tròn nội tiếp tam giác \(ABC.\) Chứng minh rằng: \(AB + AC = 2(R + r).\)

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức:

+) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

+) Tứ giác có ba góc vuông là hình chữ nhật.

+) Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

+) Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm.

Lời giải chi tiết

Vì tam giác \(ABC\) vuông tại \(A\) nên tâm đường tròn ngoại tiếp tam giác \(ABC\) là trung điểm của cạnh huyền \(BC.\)

Ta có:    \( BC = 2R\)

Giả sử đường tròn tâm \((O)\) nội tiếp tam giác ABC và tiếp xúc với AB tại \(D, AC\) tại \(E\) và \(BC\) tại \(F.\)

Ta có: \(OD  \bot AB \Rightarrow \widehat {ODA} = 90^\circ \)

\(OE \bot AC \Rightarrow \widehat {OEA} = 90^\circ \)

\(\widehat {BAC} = 90^\circ \) (gt)

Tứ giác \(ADOE\) có ba góc vuông nên nó là hình chữ nhật

Lại có: \(AD = AE\) (tính chất hai tiếp tuyến giao nhau)

Vậy tứ giác \(ADOE\) là hình vuông.

Suy ra: \(AD = AE = EO = OD = r\)

Theo tính chất hai tiếp tuyến cắt nhau ta có:

+) \( AD = AE\)

+) \(  BD = BF\)

+) \(  CE = CF\)

Ta có: \(  2R + 2r =BC+AD+AE\)\(= BF + FC + AD + AE\)

\(             = (BD + AD) + (AE +CE)\)

\(             = AB + AC\)

Vậy \(AB + AC = 2 (R + r).\)

HocTot.Nam.Name.Vn

  • Bài 60 trang 166 SBT toán 9 tập 1

    Giải bài 60 trang 166 sách bài tập toán 9. Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:...

  • Bài 61* trang 166 SBT toán 9 tập 1

    Giải bài 61* trang 166 sách bài tập toán 9. Cho nửa hình tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C, D.

  • Bài 62* trang 166 SBT toán 9 tập 1

    Giải bài 62* trang 166 sách bài tập toán 9. Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB)...

  • Bài 63* trang 166 SBT toán 9 tập 1

    Giải bài 63* trang 166 sách bài tập toán 9. Cho tam giác ABC vuông tại A. Đường tròn nội tiếp tam giác ABC tiếp xúc với BC tại D. Chứng minh rằng:...

  • Bài 6.1 phần bài tập bổ sung trang 166 SBT toán 9 tập 1

    Giải bài 6.1 phần bài tập bổ sung trang 166 sách bài tập toán 9. Độ dài mỗi cạnh của tam giác đều ngoại tiếp đường tròn (O ; r) bằng...

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

close